摘要:In this note we consider Lagrangian Bonnet problem for Lagrangian surfaces in complex space forms. We first give a Bonnet type theorem for conformal Lagrangian surfaces in complex space forms, then we show that any compact Lagrangian surface in the complex space form admits at most one other global isometric Lagrangian surface with the same mean curvature form, unless the Maslov form is conformal. These two Lagrangian surfaces are then called Lagrangian Bonnet pairs. We also studied Lagrangian Bonnet surfaces in complex space forms, and obtain some characterizations of such surfaces.
注:因版權方要求,不能公開全文,如需全文,請咨詢雜志社