Journal Title:Iet Biometrics
The field of biometric recognition - automated recognition of individuals based on their behavioural and biological characteristics - has now reached a level of maturity where viable practical applications are both possible and increasingly available. The biometrics field is characterised especially by its interdisciplinarity since, while focused primarily around a strong technological base, effective system design and implementation often requires a broad range of skills encompassing, for example, human factors, data security and database technologies, psychological and physiological awareness, and so on. Also, the technology focus itself embraces diversity, since the engineering of effective biometric systems requires integration of image analysis, pattern recognition, sensor technology, database engineering, security design and many other strands of understanding.
The scope of the journal is intentionally relatively wide. While focusing on core technological issues, it is recognised that these may be inherently diverse and in many cases may cross traditional disciplinary boundaries. The scope of the journal will therefore include any topics where it can be shown that a paper can increase our understanding of biometric systems, signal future developments and applications for biometrics, or promote greater practical uptake for relevant technologies:
Development and enhancement of individual biometric modalities including the established and traditional modalities (e.g. face, fingerprint, iris, signature and handwriting recognition) and also newer or emerging modalities (gait, ear-shape, neurological patterns, etc.)
Multibiometrics, theoretical and practical issues, implementation of practical systems, multiclassifier and multimodal approaches
Soft biometrics and information fusion for identification, verification and trait prediction
Human factors and the human-computer interface issues for biometric systems, exception handling strategies
Template construction and template management, ageing factors and their impact on biometric systems
Usability and user-oriented design, psychological and physiological principles and system integration
Sensors and sensor technologies for biometric processing
Database technologies to support biometric systems
Implementation of biometric systems, security engineering implications, smartcard and associated technologies in implementation, implementation platforms, system design and performance evaluation
Trust and privacy issues, security of biometric systems and supporting technological solutions, biometric template protection
Biometric cryptosystems, security and biometrics-linked encryption
Links with forensic processing and cross-disciplinary commonalities
Core underpinning technologies (e.g. image analysis, pattern recognition, computer vision, signal processing, etc.), where the specific relevance to biometric processing can be demonstrated
Applications and application-led considerations
Position papers on technology or on the industrial context of biometric system development
Adoption and promotion of standards in biometrics, improving technology acceptance, deployment and interoperability, avoiding cross-cultural and cross-sector restrictions
Relevant ethical and social issues
生物特征識別領域(基于個人的行為和生物特征自動識別個人)現已達到成熟水平,可行的實際應用不僅可能而且越來越可用。生物特征識別領域的特點是其跨學科性,因為雖然主要關注強大的技術基礎,但有效的系統設計和實施通常需要廣泛的技能,例如人為因素、數據安全和數據庫技術、心理和生理意識等。此外,技術重點本身包含多樣性,因為有效的生物特征識別系統的工程需要整合圖像分析、模式識別、傳感器技術、數據庫工程、安全設計和許多其他理解。
該期刊的范圍故意相對較廣。雖然重點關注核心技術問題,但人們認識到這些問題可能本質上是多樣化的,在許多情況下可能跨越傳統的學科界限。因此,該期刊的范圍將包括任何可以證明論文可以增加我們對生物識別系統的理解、預示生物識別未來發展和應用或促進相關技術更廣泛實際應用的主題:
開發和增強單個生物識別模式,包括既定和傳統模式(例如面部、指紋、虹膜、簽名和手寫識別)以及較新或新興的模式(步態、耳朵形狀、神經模式等)
多生物識別、理論和實踐問題、實用系統的實施、多分類器和多模式方法
用于識別、驗證和特征預測的軟生物識別和信息融合
生物識別系統的人為因素和人機界面問題、異常處理策略
模板構建和模板管理、老化因素及其對生物識別系統的影響
可用性和面向用戶的設計、心理和生理原理和系統集成
用于生物特征識別處理的傳感器和傳感器技術
支持生物特征識別系統的數據庫技術
生物特征識別系統的實施、安全工程影響、智能卡及相關實施技術、實施平臺、系統設計和性能評估
信任和隱私問題、生物特征識別系統的安全性和支持技術解決方案、生物特征識別模板保護
生物特征識別密碼系統、安全性和與生物特征識別相關的加密
與法醫處理的聯系和跨學科共性
核心基礎技術(例如生物識別技術(例如,圖像分析、模式識別、計算機視覺、信號處理等)與生物識別處理的具體相關性可得到證明。
應用和應用主導的考慮
關于生物識別系統開發的技術或工業背景的立場文件
采用和推廣生物識別標準,提高技術接受度、部署和互操作性,避免跨文化和跨部門限制
相關的倫理和社會問題
Iet Biometrics創刊于2012年,由Wiley出版商出版,收稿方向涵蓋COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE全領域,此期刊水平偏中等偏靠后,在所屬細分領域中專業影響力一般,過審相對較易,如果您文章質量佳,選擇此期刊,發表機率較高。平均審稿速度 33 Weeks ,影響因子指數1.8,該期刊近期沒有被列入國際期刊預警名單,廣大學者值得一試。
大類學科 | 分區 | 小類學科 | 分區 | Top期刊 | 綜述期刊 |
計算機科學 | 4區 | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 計算機:人工智能 | 4區 | 否 | 否 |
名詞解釋:
中科院分區也叫中科院JCR分區,基礎版分為13個大類學科,然后按照各類期刊影響因子分別將每個類別分為四個區,影響因子5%為1區,6%-20%為2區,21%-50%為3區,其余為4區。
大類學科 | 分區 | 小類學科 | 分區 | Top期刊 | 綜述期刊 |
計算機科學 | 3區 | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 計算機:人工智能 | 4區 | 否 | 否 |
大類學科 | 分區 | 小類學科 | 分區 | Top期刊 | 綜述期刊 |
計算機科學 | 3區 | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 計算機:人工智能 | 4區 | 否 | 否 |
大類學科 | 分區 | 小類學科 | 分區 | Top期刊 | 綜述期刊 |
工程技術 | 4區 | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 計算機:人工智能 | 4區 | 否 | 否 |
大類學科 | 分區 | 小類學科 | 分區 | Top期刊 | 綜述期刊 |
計算機科學 | 3區 | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 計算機:人工智能 | 4區 | 否 | 否 |
大類學科 | 分區 | 小類學科 | 分區 | Top期刊 | 綜述期刊 |
計算機科學 | 4區 | COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 計算機:人工智能 | 4區 | 否 | 否 |
按JIF指標學科分區 | 收錄子集 | 分區 | 排名 | 百分位 |
學科:COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE | SCIE | Q3 | 136 / 197 |
31.2% |
按JCI指標學科分區 | 收錄子集 | 分區 | 排名 | 百分位 |
學科:COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE | SCIE | Q4 | 152 / 198 |
23.48% |
名詞解釋:
WOS即Web of Science,是全球獲取學術信息的重要數據庫,Web of Science包括自然科學、社會科學、藝術與人文領域的信息,來自全世界近9,000種最負盛名的高影響力研究期刊及12,000多種學術會議多學科內容。給期刊分區時會按照某一個學科領域劃分,根據這一學科所有按照影響因子數值降序排名,然后平均分成4等份,期刊影響因子值高的就會在高分區中,最后的劃分結果分別是Q1,Q2,Q3,Q4,Q1代表質量最高。
CiteScore | SJR | SNIP | CiteScore排名 | ||||||||||||||||
5.9 | 0.583 | 0.957 |
|
名詞解釋:
CiteScore:衡量期刊所發表文獻的平均受引用次數。
SJR:SCImago 期刊等級衡量經過加權后的期刊受引用次數。引用次數的加權值由施引期刊的學科領域和聲望 (SJR) 決定。
SNIP:每篇文章中來源出版物的標準化影響將實際受引用情況對照期刊所屬學科領域中預期的受引用情況進行衡量。
是否OA開放訪問: | h-index: | 年文章數: |
開放 | 19 | 18 |
Gold OA文章占比: | 2021-2022最新影響因子(數據來源于搜索引擎): | 開源占比(OA被引用占比): |
75.93% | 1.8 | 0.57... |
研究類文章占比:文章 ÷(文章 + 綜述) | 期刊收錄: | 中科院《國際期刊預警名單(試行)》名單: |
94.44% | SCIE | 否 |
歷年IF值(影響因子):
歷年引文指標和發文量:
歷年中科院JCR大類分區數據:
歷年自引數據:
2023-2024國家/地區發文量統計:
國家/地區 | 數量 |
India | 27 |
CHINA MAINLAND | 23 |
USA | 16 |
England | 12 |
GERMANY (FED REP GER) | 12 |
Turkey | 11 |
Spain | 9 |
France | 8 |
Italy | 8 |
Portugal | 8 |
2023-2024機構發文量統計:
機構 | 數量 |
INDIAN INSTITUTE OF TECHNOLOGY S... | 13 |
HOCHSCHULE DARMSTADT | 7 |
INSTITUTO DE TELECOMUNICACOES | 7 |
SALZBURG UNIVERSITY | 5 |
UNIVERSIDADE DE LISBOA | 5 |
NORWEGIAN UNIVERSITY OF SCIENCE ... | 4 |
CHINESE ACADEMY OF SCIENCES | 3 |
ISTANBUL TECHNICAL UNIVERSITY | 3 |
NATIONAL INSTITUTE OF TECHNOLOGY... | 3 |
NORTHWESTERN POLYTECHNICAL UNIVE... | 3 |
近年引用統計:
期刊名稱 | 數量 |
PATTERN RECOGN | 106 |
IEEE T PATTERN ANAL | 99 |
IEEE T INF FOREN SEC | 79 |
IEEE T IMAGE PROCESS | 62 |
IET BIOMETRICS | 53 |
PATTERN RECOGN LETT | 49 |
NEUROCOMPUTING | 39 |
EXPERT SYST APPL | 26 |
IMAGE VISION COMPUT | 22 |
IEEE T CIRC SYST VID | 19 |
近年被引用統計:
期刊名稱 | 數量 |
IET BIOMETRICS | 53 |
IEEE ACCESS | 45 |
MULTIMED TOOLS APPL | 27 |
SENSORS-BASEL | 24 |
ACM COMPUT SURV | 19 |
IEEE T INF FOREN SEC | 17 |
PATTERN RECOGN LETT | 15 |
EXPERT SYST APPL | 12 |
APPL SCI-BASEL | 11 |
NEUROCOMPUTING | 11 |
近年文章引用統計:
文章名稱 | 數量 |
Strengths and weaknesses of deep... | 24 |
Robust gait recognition: a compr... | 15 |
Employing fusion of learned and ... | 11 |
Grey Wolf optimisation-based fea... | 10 |
Unconstrained ear recognition us... | 10 |
Secure multimodal biometric syst... | 9 |
Hybrid robust iris recognition a... | 9 |
Domain adaptation for ear recogn... | 7 |
Ear verification under uncontrol... | 7 |
ScoreNet: deep cascade score lev... | 6 |
同小類學科的其他優質期刊 | 影響因子 | 中科院分區 |
Journal Of Field Robotics | 4.2 | 2區 |
Computer Science Review | 13.3 | 1區 |
Computer Networks | 4.4 | 2區 |
Journal Of Computational Science | 3.1 | 3區 |
Ict Express | 4.1 | 3區 |
Computer Speech And Language | 3.1 | 3區 |
Neurocomputing | 5.5 | 2區 |
Applied Artificial Intelligence | 2.9 | 4區 |
International Journal Of Approximate Reasoning | 3.2 | 3區 |
Iet Software | 1.5 | 4區 |
若用戶需要出版服務,請聯系出版商:WILEY, 111 RIVER ST, HOBOKEN, USA, NJ, 07030-5774。