時間:2023-09-08 17:00:35
序論:在您撰寫高層建筑結構設計要點時,參考他人的優秀作品可以開闊視野,小編為您整理的7篇范文,希望這些建議能夠激發您的創作熱情,引導您走向新的創作高度。
中圖分類號 TU973 文獻標識碼 A 文章編號 1673-9671-(2012)071-0094-01
當前高層建筑結構設計工程師面臨的一個首要問題就是怎樣才能設計出安全、舒適、經濟、美觀,并能滿足人們精神及物質生活要求的高層建筑。因此,對高層建筑結構設計要點的熟練掌握,是高層建筑結構設計人員的必備基本素質。筆者將多年從事高層建筑結構設計的經驗做了一個總結,提出了高層建筑結構設計中一些需要注意的問題,并對高層建筑結構設計的體系作了分析,以供參考。
1 高層建筑結構設計的特點分析
1.1 水平荷載是高層建筑結構設計當中的決定因素
高層建筑所承受的樓面荷載及其自身重量于豎向構件當中的彎矩及軸力數值與高層建筑的實際高度成正比;高層建筑結構中傾覆力矩的產生與水平荷載相關,結構的軸力也由豎向構件所引起,傾覆力矩及軸力都與高層建筑本身的實際高度成正比;對于具有特定高度的建筑來說,豎向荷載在一般情況下是一個定值;而高層建筑結構中的水平荷載數值由結構動力的特性決定,隨動力特性變化而變化,尤其是水平荷載當中的風荷載。
1.2 軸向變形在高層建筑結構設計當中是不可忽視的因素
如高層建筑所承受的豎向荷載值較大,可引起柱中出現軸向變形的現象,且幅度較大,從而影響連續梁的彎矩,對連續梁中部的支座處負彎矩值產生了減小作用,而對端支座的負彎矩值及跨中正的彎矩值則是產生了增大作用。較大的豎向荷載值還會影響預制構件下料的長度;在這樣的情況下,就需要以軸向變形作為依據的計算值,調整下料長度。此外,豎向荷載值對構件側移及剪力產生的影響也不可忽視,因其與構件豎向的變形相比較考慮,會產生與不安全結果不相符合的現象。
1.3 側移是高層建筑結構設計中的控制指標
高層建筑與低矮的樓房不一樣,高層建筑結構設計工作中,關鍵的影響因素為結構側移;隨建筑本身實際高度的增大,水平荷載之下的建筑結構側移的變形會迅速增大??梢园l現,在水平荷載的作用下,需要對結構側移進行控制,使其保持在一定的限度之內。
1.4 結構延性為高層建筑結構設計的重要指標
高層建筑的結構要比低矮樓房的結構更柔,在地震的作用下,出現的變形幅度會更大,減少了倒塌的現象。在高層建筑的構造方面可采取相應的措施,使之進入到塑性變形的階段后,仍具有足夠延性,保持較強變形能力。
2 高層建筑結構設計體系分析
2.1 剪力墻-框架體系的設計
在高層建筑結構中的框架體系剛度及強度均不能達到要求時,常常需要在高層建筑的平面內適當的位置,建立剪力墻以代替結構中的部分框架,將剪力墻-框架結構體系應用于結構設計當中[3]。當建筑物承受來自水平方向的壓力時,剪力墻及框架可以通過剛度足夠強的連梁及樓板共同組成相互協同結構工作體系。在剪力墻-框架設計體系中,承受來自垂直方面荷載的主體為框架體系,水平剪力的承受主體為剪力墻;在剪力墻-框架體系中,位移曲線為彎剪型。結構側向的剛度由于剪力墻的作用而增大,建筑在水平方向上的位移得以減??;框架所承受的水平方向上的剪力出現明顯下降的趨勢,豎向的內力分布變得均勻。
2.2 剪力墻結構體系的設計
剪力墻結構體系是指由平面的剪力墻結構組成的建筑主體受力結構。在剪力墻結構體系當中,全部的水平力及垂直荷載由單片的剪力墻所承受。剪力墻結構體系是一種剛性的結構,位移曲線是一種彎曲型結構。剪力墻結構體系的剛度及強度均相對較高,具有一定延性,在傳力時具有直接及均勻的優點,整體性好,且抗倒塌的能力較強,不失為一種優良的建筑結構體系,其可建的高度一般大于剪力墻-框架體系。
2.3 筒體結構體系
筒體結構體系指的是以筒體作為抗側力的構件建筑結構體系,筒體結構體系主要包括筒體-框架、單筒體、多束筒及筒中筒等其他多種形式。可將筒體分為空腹筒及實腹筒兩個大類。筒體為空間受力的結構構件與三維豎向的結構單體,由曲面墻或平面墻圍成;也可由窗裙梁、密排柱及開孔鋼筋外墻等構成。筒體結構體系的強度及剛度均相對較高,在大空間、大跨度等特殊類型的高層建筑中被廣泛應用
3 高層建筑結構設計的基本假定分析
由剪力墻及簡體框架組成了高層建筑主體結構,組成的方式為平樓板水平連接。因此,在三維空間中精確及完善的分析高層建筑結構設是存在難度的,特別是不同的實用分析方法,要引入不同程度的簡化計算模型。以下四種假定是高層建筑結構設計中比較常見的計算模型。
3.1 小變形基本假定
在一般情況下,小變形基本假定在高層建筑結構設計分析中被應用得最多。很多從幾何方面入手的研究人員對P—效應進行了詳細研究,并得出以下注意事項:在建筑高度與頂點的水平位移的比值大于0.2%的情況下,需高度重視建筑結構受到P—效應影響的程度。
3.2 剛性樓板基本假定
在分析高層建筑結構設計時,存在的問題主要是過于注重平面內剛度,而忽視了平面外剛度。采用剛性樓板基本假定的分析法不僅能將結構的位移自由度減少,計算的方法簡化,而且能為筒體結構空間薄壁的桿件理論創造良好的計算及使用條件。在一般的情況下,在剪力墻結構體系及框架結構體系當中運用剛性樓板基本假定是可行的。但是,就豎向剛度結構出現突變的情況而言,受到樓板變形的影響較大,如有些樓板的層數不多、剛度不大及抗側力構件的間距過大等情況,尤其是結構底部及每層頂部內力的影響更為顯著。對于以上問題,要采取一些適當的調整措施進行解決。
3.3 彈性基本假定
目前,在高層建筑結構設計的分析方法當中,彈性基本假定
計算方法被運用的范圍較廣。尤其在垂直荷載的計算當中,因高層建筑結構長時間處于彈性的工作階段,實際工作情況與彈性基本假設的情況相吻合。但如果遭到較嚴重的自然災害,如較大強風及地震等,建筑結構會因較大的位移幅度而產生裂縫,從而進入到彈塑性的工作階段。在這樣的情況下,為了能使高層建筑結構狀態得到真實的反應,只能在結構設計中運用彈塑性分析方法。
3.4 計算圖形基本假定
高層建筑結構設計中三維空間的分析方法主要為計算圖形基本假定。二維協同分析沒有將側力構件中公共的節點在外位移納入到分析的范圍當中;側力構件外的剛度及扭轉剛度并沒有受到高度重視。分析精通桿的三維空間中每一節點時,自由度只有六個,不足以完成分析,使用計算圖形基本假定分析法,可以彌補這一缺陷。
4 結束語
高層建筑的快速發展增加了對其力學及結構分析模型等方面的諸多要求。因此,尋找新的結構設計形式與正確的力學分析模型,是當前高層建筑結構設計工作人員的主要奮斗目標;只有找到新型建筑結構設計形式與正確的力學分析模型,才能使高層建筑獲得更好的發展。
參考文獻
[1]都鳳強.高層建筑結構設計的實踐探討[J].科技創新導報,2009,21(8):942-943.
【關鍵詞】高層;建筑;結構;設計; 要點
但是就目前來說,在其結構設計中還具有一定的問題。下面本文分析高層建筑結構設計中存在的問題和對策,并探討其改進措施。
1 高層建筑結構設計中存在的問題
1.1 高層建筑結構設計不合理,沒有處理好高層建筑結構的均衡關系
在目前一些高層建筑結構設計中,過分地追求美觀度和個性化,從而忽略了其設計的科學性和合理性。同時高層建筑的結構設計是多種多樣的,框架結構體系、剪力墻結構體系、框架剪力墻結構體系、筒體結構體系等等,在選擇過程中存在一定的不合理性。另外在高層建筑的整體結構設計中,要注重考慮水平載荷中的風荷載以及地震作用,做好抗震設防系統,以能夠提高建筑安全性,但是在實際建筑結構設計中,還存在對這些問題不注重問題,考慮不全面問題,從而導致高層建筑存在一定的安全隱患。一個造型完美的高層建筑必須很好地均衡主體、裙房和頂部的尺度關系。高層建筑是城市形態的關鍵因素和重要景點,因此要規劃好城市的結構中高層建筑的位置,以及高層建筑與城市街道的關系,保證高層建筑不能對街道行人和正?;顒釉斐捎绊懀膊荒茉斐梢曈X上的影響。目前高層建筑在這一方面還具有一定的薄弱性,沒有處理好高層建筑結構的均衡關系。
1.2 高層建筑結構設計對其受力情況和水平荷載的考慮不夠完善
在高層建筑結構設計中,其高度不同,那么其受力情況也就不同,其水平荷載跟豎向荷載共同作用,是對高層建筑整體設計效果進行控制的主要因素。但是隨著建筑高度的不斷增加,其側向位移增加的速度也越來越快,底部彎矩也隨之加大,其側向變形過度會導致其結構在橫向荷載下,附加應力明顯增加,從而引起了填充墻裂縫的出現;導致電梯軌道以及裝修等服務設施,出現變形或者裂縫問題,嚴重危及了高層建筑結構的正常使用和耐久性。
2 高層建筑結構設計要點
2.1 高層建筑基礎設計中注意事項
在高層樓宇根基策劃中要關注的情況劃分為三類:第一類,高層樓宇根基一定要持久耐用,由于高層樓宇根基在地下部分,地下水分含量高,根基大多處在比較潮濕的環境中,因此建筑高層樓宇的根基一定要使用持久耐用的材料,如增加根基中鋼筋混凝土的鋼筋結構;第二類,高層樓宇的根基要足夠厚實,才能夠確保承擔住上層構造傳遞下來的重量,同時勻稱的傳遞到高層樓宇的根基中;第三類,高層樓宇根基計劃一定要進行整體的考慮,不能只想到建筑樓宇自身的高度以及對附近建筑物的作用,還要想到高層樓宇在承受沖擊之后是不是形狀能夠不改變,符合科學、經濟的建筑環境。
2.2 高層樓宇構造策劃中的共振情況
共振形成的環境是,高層樓宇的自震時間以及出現地震位置的特性一致抑或相當,因此能夠使用具有目的性的預測樓宇出現地震時的特點情況,之后加強高層樓宇的自震時間和樓宇所建筑地區地震特點之間的距離,來防止形成共振的可能性。
2.3 高層樓宇構造策劃中的水平挪動情況
高層樓宇構造策劃中水平挪動不能僅以達到高層樓宇建筑標準為基礎,還要結合所建位置的地震周期等情況。如在高層樓宇構造低于地震策劃時,因為抗震情況和構造剛度有關,是正比的關系,所以策劃的構造剛度小,不過出現的挪動在允許的范疇內,構造周期長,抗震力不大,因此這種構造策劃是不科學的。
2.4 選取適宜的設計簡圖
設計簡圖一定要確保有相關的高層樓宇結構技術,并且有對高層樓宇構造的設計方式,設計簡圖如果選取的不適合甚至對高層樓宇構造的安全產生不良影響,所以保證高層建筑構造穩定的關鍵是選取適宜的設計簡圖。還要留意的是設計簡圖存在錯誤是很正常的,不過差錯一定要在高層施工構造策劃準許的范疇內。
2.5 選取科學實用的構造方法
科學的高層樓宇策劃一定憑借經濟實用的構造方法,也就是說在高層樓宇構造策劃中要選取實際可行的構造系統以及構造方式。針對構造系統,在同一個構造單位中最好不要使用不一樣的構造系統結合在一起運用,構造系統一定要簡單便利,受力確定。在對高層樓宇構造策劃程序中,要全面的對各種會存在影響的要素進行解析,和有關部門商定,之后敲定詳細的最科學的高層樓宇構造策劃方案。高層建筑中,由于豎向負荷較大的原因,可能會引起在柱中較大程度上的變形,從而對連續梁、彎矩產生比較大的影響,該影響包括兩個方面:一方面是,會增大端支座負彎矩的數值或者是增大跨中正彎矩的數值,另一方面是,減小連續梁中間支座的負彎矩值。
2.6 準確解析、核實設計結果
在高層樓宇構造策劃程序中大多使用電腦,不過因為現在市場中存在的電腦軟件類型繁多,不一樣的電腦程序設計的結果也是不一樣的,因此這就需要高層樓宇構造設計工作者要全面熟悉電腦的程序所適合使用的范疇,避免在借助電腦設計的過程中,因為程序自身的不足,軟件中的設計方式不適合構造的實際設計狀況因為電腦程序對項目施工構造策劃產生不良影響。還有,要避免電腦協助設計構造策劃中操作者的失誤,在輸入資料時一定要嚴謹仔細,并且操作者在后續作業中,對資料也要嚴格的進行審核,科學解析,做出最正確的判定。高層建筑和低層建筑的區別之一就是:在建筑結構方面,高層建筑的結構較柔和,同時也就保障在地震作用下高層建筑的變形更大。為了避免高層建筑在遭受較大沖擊后,在進入高層建筑塑性變形階段的前提下,高層建筑仍可以具有較強的變形能力,也就是避免高層建筑的倒塌,需要在高層建筑結構設計時采取恰當合理的措施,達到保障高層建筑結構具有應對較大沖擊的延性。
2.7 高層建筑結構設計時盡量減輕自重
在同樣的地基情況下,減輕自重更有利于加大樓層的高度,同時可以獲得更高的經濟效益。減輕自重在一定程度上可以減少地震的破壞性,是提高結構抗震能力的有效辦法。如果高層建筑的質量很大,作用在結構上的地震剪力大,而且高層建筑重心高地震造成的傾覆力矩大,破壞性也就越強。因此,在高層建筑房屋中,結構構件在保證高強度材料的條件下,各種非結構構件和圍護墻體都應當采用輕質材料以減輕房屋自重。這樣有利于減小結構剛度和地震破壞強度,節省材料,降低成本,充分利用有限的土地面積創造更大的建筑面積。
2.8 使結構具有足夠的抵抗側向力和剛度的能力
高層建筑結構設計中,不僅要求整體結構能夠承受足夠的垂直負荷,而且必須使結構具有足夠的抵抗側向力和剛度的能力,不至于因受到側向力時而發生超出允許范圍的側向偏移。如果側向位移太大,會使樓層重心偏移,造成居民的驚慌,影響樓層內居民的正常學習、工作和休息。甚至還會是家居的墻體出現傾斜,裝飾脫落或出現裂紋,整個樓層里的水氣管道、電梯發生異常,框架結構破壞等。
3 結語
隨著社會技術的不斷發展和進步,高層建筑的設計理念和設計技術也在不斷地更新,對其設計風格也進行了積極的探索和改變,這都將推動現代高層建筑的迅速發展。高層建筑的結構設計是一項綜合性的技術工作,是建造建筑物的基礎工,結構設計的優劣對建筑物的安全性、經濟性、實用性有著重要的意義。因此工程技術人員要結合專業知識、施工技術要求、地質情況、開發商設計要求等,合理設計建筑物高度和建筑結構。
參考文獻:
關鍵詞:轉換層;高層建筑;梁式;豎向;抗震
中圖分類號:TU208文獻標識碼: A
一、轉換層的功能與設計原則
(一)轉換層的功能
1、建筑功能
利用轉換層結構可以為高層建筑提供寬闊的室內空間和出入口。
2、結構功能
高層建筑利用轉換層可以實現上下部結構的轉換,上部的剪力墻結構更適合于民用住宅結構,而下部框架結構由于可以具有較大的內部空間,更適宜商用。通過轉換層將兩者有效的融合為一體,確保了高層建筑結構的多樣化。
3、軸線及上下層柱網轉換
利用轉換層進行結構設計時,在其不改變上下結構形式的情況下,可以通過對軸線及上下層柱網的改變,實現下部柱距的擴大,以大柱網的形式滿足下部大空間的需求。
4、錯位布置
在進行上下結構轉換時,可以對上部結構和下部結構的軸線和柱網軸線進行錯位布置。
(二)設計原則
高層建筑由于自身重量較大,所以對其穩定性和抗震性具有較高的要求,但在進行轉換層設置時,極易導致豎向剛度突變的發生,從而導致高層建筑結構的抗震性能受到較大的影響,所以在進行轉換層設計時需要遵循利用直接落地的豎向構件、宜低不宜高、宜小不宜大的諸多原則。即在進行轉換層設置時,由于豎向構件會對剛度和結構的抗震性能帶來突變,所以需要選擇直接落地的豎向構件來進行設置;在進行轉換層設置時,盡量選擇高層建筑豎向位置較低的地方;同時為了確保所設置的轉換層結構型式能夠具有更明確的傳力路徑,所以需要對轉換層結構進行優化,這樣對于結構設計和施工都會有一定的益處;在轉換時需要對剛度進行適度的控制,不宜過大,這樣不僅有利于建筑物的安全性,而且也會帶來較好的經濟性。
二、結構轉換層的類型及設計方法論述
高層建筑結構轉換層可以分為四種類型:梁式轉換層、厚板式轉換層、箱式轉換層和桁架式轉換層。
(一)梁式轉換層
特點:梁式轉換層分為托柱形式轉換梁截面設計和托墻形式轉換梁截面設計,這兩者是按功能不同來進行劃分的。
1、托柱形式轉換梁截面設計
當轉換梁承接的是上部的普通框架時,可以按照普通的截面設計進行配筋計算,因為這時的轉換梁承受的力基本上和普通梁承受的力是一樣的,但是,當轉換梁承受的是上部斜桿框架時,就應該按偏心受拉構件進行截面尺寸設計,因為,此時的轉換面承受的是軸向拉力。
2、托墻形式轉換梁截面設計
在轉換梁的施工過程中,力學問題是一個關鍵問題,必須要予以重視,當轉換梁承受上部的墻體是小墻體時,要采取普通梁的截面設計方法進行配筋計算,且縱向的鋼筋也可以放置在轉換梁的底部,像普通梁那樣布置就可以了;當轉換梁承受的是上部墻體且滿跨不開洞時,轉換梁應采取的截面設計方法是深梁截面設計方法,它的受力特點和破壞形態表現為深梁,不過此時的轉換梁跨中較大范圍的內力較大,所以其縱向的鋼筋就不應該彎曲或者截斷了;當轉換梁承托上部墻體滿跨或者不滿跨時,但是剪力墻長度比較大時,應該采取的轉換梁設計方法是深梁截面設計方法。
(二)箱型轉換結構
當轉換梁的截面較大時,可以在轉換梁的梁頂和梁底同時設置一層樓板,遍布全層,使得整個樓層都構成“箱子”形式,也因此被稱為“箱型轉換層。
箱型轉換結構也是高層建筑設計中較為常用的一種結構形式,在設計過程中主要要注意支撐體系的合理設置,這是保證建筑施工質量的重要前提,主要特點有:層高大、自重大、混凝土強度高、結構受力比較復雜、墻柱模板支設困難等,主要優點是轉換層本身的整體性非常好,但是,它也有其缺點,就是它直接占用了整個樓層的面積,使得這個樓層不能再有其他用途,只能當做設備層使用,還有一個缺點就是上面所提出的自重大、造價高,這也是在實際應用當中很少使用的原因。
(三)厚板式轉換層
這種厚板厚梁式轉換結構主要優點是布置靈活,整體性比較好,當上、下柱網線錯開比較多很難用梁來承托時就需要采取這種形式,做成厚板,厚板的厚度也可以根據上下的結構以及柱網尺寸而定,但是這種厚板式轉換層的自重很大,地震作用大,耗費材料多,不僅耗費資金而且還容易發生震害,所以這種方法采用的也不是很多。
厚板式轉換層可以采用T B SA 等的三維空間分析程序對整體進行內力分析,主要是轉換板的不規則邊界,這樣一般會采用有效單元法進行內力分析,還可以采用復雜樓板有限元分析軟件進行進一步計算,還可以對板進行在豎向壓力荷載作用下的受彎和局部壓力等的計算。
(四)桁架式轉換層
桁架可以分為兩種,一種是空腹桁架,另一種是實腹桁架,這種桁架式轉換層主要是由梁式轉換層結構轉換而來的,與梁式轉換層相比它的受力更加明確、整體性好、抗震能力強、框支柱柱頂彎矩和剪力更加小一點,這是它主要的優點,但是缺點也比較明顯,施工難度大,更加復雜、節點設計難度大??梢詫ζ溥M行整體結構的內力分析,當高層建筑的下部為大商場時,需要的空間必須要大,上部則是居住辦公等的小空間,這時就可以采用桁架式轉換層,特別是在需要設置管道時,更要采取這種方式,一般采用桁架式轉換層時應該滿層進行布置,而且上弦節點要與上部密柱中心對齊。桁架式轉換層的重量比較小,所以也減小了下部框架的承重負荷。
三、帶轉換層的高層建筑結構設計要點
(一)轉換層結構布置
據相關研究已經顯示,在底部的轉換層中,如果其位置越高,它的上下高度的突變就會越大,轉換層的上下內力的傳遞途徑,其突變也會加劇,落地的剪力墻以及其他墻體就容易出現裂縫現象,框支柱內力加大,使得轉換層的上部其附近的一些墻體就會被破壞。所以說,轉換層的位置如果過于高,就會對抗震產生不利的影響。按照相關的研究結果顯示,轉換構件能夠運用箱形結構、斜撐、厚板、轉換大梁等形式,在地震區對于一些轉換厚板的使用經驗是比較少的,可以在一些非地震區采用,在一些大空間的地下室中,因為其周圍有著約束的作用,而地震的反應也低于上部的框支結構,所以,在 7 度到 8 度地區的地震設計的一些地下室就能夠采用這種厚板轉換層。
(二)轉換層豎向布置
轉換結構可以根據結構的傳力以及建筑的功能需要,沿著層高的建筑方向靈活布置,也可以符合建筑功能要求的基礎上,能夠在樓層的局部來設置轉換層,而且自身的空間可以作為一種技術設備層,也可以作為一種正常的使用層,但是前提是要保證轉換層的剛度,這樣來防止剛度的過分懸殊。
(三)轉換層抗震設計
為了進一步的保證設計的準確性與安全性,規定在一些框支剪力墻其轉換層的位置如果是設置在第三層以上,那么框支柱以及剪力墻其底部的抗震等級要提高一級,如果已經是特一級就不再需要提高,而對于底部的框架來說,如果其為密柱框架,其抗震等級就不用再提高。轉換層其構件在水平地震作用下的內力要將其調整,如果是八度的抗震設計,就要對豎向地震的影響需要考慮。
(四)轉換層樓板設計
轉換層將框支剪力墻分成上下兩部分,對于這兩者來說,其受力情況是有一定差距的,在上部的樓層中,因為外荷載而產生的水平力,有自己的分配原則,它是根據剪力墻的剛度來進行的。在下部樓層中,框支柱的剛度與落地的剪力墻的剛度也是不同的,后者承擔著水平剪力,也就是說,在轉換層處荷載的分配不是很均勻。轉換層其樓板具有比較重的任務,轉換樓板其自身的變形大、受力大,應該要保持足夠的剛度來完成對于自己任務的支撐。
參考文獻
[1]李多龍. 高層建筑結構設計的基本流程分析[J]. 江西建材. 2013(06)
關鍵字:高層建筑;結構設計;要點分析
1高層建筑結構設計的基本原則
1.1結構方案合理化原則。高層建筑結構方案的合理化是指高層建筑結構設計方案必須與結構體系和結構形式的要求保持一致,同時應滿足經濟性的要求,其中結構體系的具體要求為傳力簡單化、受力明確化。針對某些結構單元相同的高層建筑物,其結構體系應相同。1.2計算簡圖合理化原則。高層建筑結構設計的基礎是計算簡圖,計算簡圖的合理性直接關乎高層建筑結構的安全,由此可見高層建筑結構設計必須堅持簡圖合理的原則。高層建筑結構構件及節點的簡化可以有多種選擇,但必須把計算結果的誤差控制在合理的范圍內,以免對建筑結構產生負面的影響,從而影響建筑結構的安全。1.3結果分析精準化原則。伴隨著計算機技術的迅速發展,當前很多領域都開始應用計算機技術,并且發揮著至關重要的作用,而在建筑結構方案設計中,通過應用計算機技術能夠對相關數據進行科學更加科學的分析,不僅能夠有效的降低人工計算存在的失誤,而且還能確保建筑結構方案的準確與合理。
2高層建筑結構設計特點
2.1水平荷載。建筑同時承受豎向荷載和地震及風產生的水平荷載,在多層建筑中,因水平荷載產生的內力和位移相對較小,對建筑建構設計的影響不大,主要是以重力為代表的豎向荷載著建筑結構的設計起控制作用。而在高層建筑中,很多時候是水平荷載對建筑結構設計起決定性作用,盡管豎向荷載對結構設計會產生重要的影響,但相對于水平荷載來說,影響相對較小。2.2軸向變形。對于多層建筑軸力項相對于彎矩項來說,對結構設計產生的影響不是很大,結構設計時可只考慮彎矩項而忽略軸力的影響。但是對高樓層建筑結構進行分析所要考慮的因素就不太一樣了,需充分考慮到高層建筑的層數、高度對豎向構件軸力值的影響。隨著高度的不斷增加,豎向構件的軸力變形也會變得特別明顯,當豎向構件軸向變形達到一定的程度,會使高層建筑的結構內力數值和分布產生變化。2.3建筑側向位移。隨著建筑樓層及高度的增加,在水平荷載的作用下產生的側向位移也會不斷的增大。高層建筑設計時,需要保證足夠的結構強度,在應對風荷載及地震作用產生的內力作用時,才能有足夠大的力量去抵御。為了能夠將風荷載及地震作用下產生的側移距離控制在一定的限度之內,就必須擁有足夠的抗側剛度能力,才能較好的保障結構安全及正常使用的舒適度。
3高層建筑結構設計存在的問題分析
3.1建筑短肢剪力墻設置存在問題。隨著人們對住宅平面與空間的要求越來越高,高層住宅建筑中短肢剪力墻的運用越來越多。在一般情況下,建筑結構的短肢剪力墻是指墻肢的高度、厚度比例為5-8的墻體。短肢剪力墻與普通剪力墻相比承擔較大軸力與剪力,抗震性能較差,從受力特性及構件的安全儲備有別普通剪力墻,為安全起見,在高層住宅結構中短肢剪力墻布置不宜過多,不應采用全部為短肢剪力墻的結構,在某些情況下還要限制建筑高度。3.2抗震結構設計問題。高層建筑結構設計中很重要的內容是結構抗震設計。受高層建筑高度過高、荷載過大的影響,一旦出現了地震,就會誘發出各種不可估計的問題。現階段我國建筑工程建設要求高層建筑最低要保證五十年的設計基準期,并對高層建筑的抗震設計進行了明確的規定。但是在實際結構設計中,存在設計人員對規范理解不透、概念設計模糊等問題。如果高層建筑結構設計人員沒有充分認識到上述問題,就會給高層建筑留下安全隱患。3.3扭轉問題。質量中心、剛度中心和幾何中心是高層建筑結構設計中的“三心”,“三心合一”也是高層建筑結構設計過程中需要盡量達到的目標。但是在實際設計中存在“三心”偏離較大的問題。在三心偏離較大的情況下,受較大水平力的影響就會出現高層建筑扭轉震動的問題,影響高層建筑的安全。
4高層建筑設計相關假定
4.1彈性假定。當建筑處于一般風力的、正常使用豎向荷載及低于設防烈度的地震的作用時,建筑結構構件一般處于彈性的工作階段,這一假定與實際的工作情況存在的差異不大。但當遭遇強震作用或者強烈的臺風天氣時,建筑產生的位移會比較大,結構構件會轉入彈塑性的工作階段。在這個時候就應當按照彈塑性動力分析方法進行分析,而不能只按照彈性假定的方法計算,否則就不能將結構構件的真實工作狀態反映出來,留下安全隱患。4.2小變形假定。小變形假定方法是除了彈性假定之外另一種比較常用的方法,但也有學者對幾何非線性問題進行研究。除了彈性假定,小變形假定方法也常被采用。但有不少學者對幾何非線性問題(P-Δ效應)做了一些研究。一般情況下,當頂點水平位移Δ與建筑物高度H的比值Δ/H>1/500時,P-Δ效應的影響就不能被忽視了。4.3剛性樓板假定。目前在我國對很多高層建筑結構進行分析時,都是將樓板的平面內剛度設定為無限大,而將樓板平面外的剛度予以忽略。在這種假定下,建筑結構體系的自由度在一定程度上減少,對計算方法進行了簡化。此外通過這種假定,使得在使用薄壁桿件的理論在對筒體體系的結構進行計算時非常方便,但是一般情況下,因為受到計算方式以及其他因素的影響,使得這種假定通常比較適合對建筑的框架以及剪力墻體系的計算。4.4計算圖形的假定。在高層建筑架構體系中,整體分析將采用的計算圖形分為一維、二維協同分析和三維空間分析三種。其中,三維空間分析的普通桿單元,每一節點含有6個自由度,按符拉索夫薄壁桿理論分析的桿端節點還應該考慮截面翹曲,截面翹曲有7個自由度。
5高層建筑結構設計要點
5.1建筑的載荷設計。在高層建筑的建筑結構設計中,建筑的安全性以及穩定性是設計的重中之重,而建筑的荷載直接影響著建筑的安全以及穩定,因此在進行建設設計時一定要做好荷載的計算。相對于一般的建筑,高層建筑的荷載及其組合要復雜的多,相關的設計人員在進行建筑的荷載計算時需要考慮的內容也多得多。在進行高層建筑的荷載計算時,最主要的內容是以下兩個方面:建筑的地震荷載以及風荷載。在實際的設計中,復雜的超限高層建筑還應當進行的風洞試驗及振動臺試驗,以確保建筑的安全。5.2建筑抗震性能的設計。因為高層建筑的高度要比普通建筑高出很多,多以其對應力的承受能力也不一樣,因此當地震時其產生的反應程度也不是一樣的,因此對于高層建筑,在進行設計的時候必須要充分考慮抗震設計。而且抗震設計時,必須要對建筑所處的地形地質條件都進行充分的考慮,通常土地比較堅硬的其抗震強度會比較大,所以要盡量選擇硬度比較大的土層,而避開那些土質疏松的地層,而對土層的變化進行有效的把握成為抗震設計中的一個困難點。5.3高層建筑結構的包絡設計。包絡設計是近年來比較常見的設計方式,可以有效解決工程項目結構設計中存在的各種問題。當前工程設計問題變化比較多,有許多因素都會影響到結構效應,各種問題盤根錯節,使用目前已經掌握的只是或者軟件很難對其進行準確的分析。學術科學和工程的不同點在于后者難以長時間等待。因此要通過優化結構設計的形式,利用最少的經濟投入來獲取最大的經濟效益,并解決工程項目存在的問題。不同的工程條件可以用不同的網絡設計原則來處理,在對待轉換結構轉換層或者連體結構時,也可以用網絡設計,對構件進行分析驗算,取不利值包絡設計。
總之,高層建筑的復雜性不僅要求其設計人員必須具有較高的綜合素質,而且還有掌握足夠的理論知識以及相關的法律知識,而且在對其進行結構設計時也要對對建筑周圍的環境進行綜合的考慮,由此來提高設計的質量,同時降低建造的成本,促進高層建筑的健康發展。
作者:崔惠林 單位:保定市城鄉建筑設計研究院
參考文獻:
[1]劉軍進,肖從真,王翠坤,徐自國,田春雨,陳凱.復雜高層與超高層建筑結構設計要點[J].建筑結構,2011,11:34-40.
[2]曹彬,李銘.高層建筑結構設計中剪力墻結構的要點分析[J].中國建筑金屬結構,2013,22:65.
[3]楊留學.論高層建筑結構設計的注意事項和要點分析[J].門窗,2012,08:225-226.
[4]王慧君,徐勇.高層建筑結構設計的要點探析[J].科技與企業,2014,06:171.
[5]楊俊.高層建筑結構設計中的要點分析[J].江西建材,2014,13:35-36.
[6]鄒喜財.高層建筑結構設計的要點分析[J].建材與裝飾,2016,12:123-124.
【關鍵詞】高層建筑;結構設計;設計要點;對策
1高層建筑結構設計的特點分析
(1)水平力是設計的決定性因素。在低層或者多層的建筑結構設計中,常常用重力為代表的豎向荷載去控制建筑物的結構。然而,在高層建筑中,雖然豎向荷載能起到一定的控制作用,但是水平荷載在其中卻起著決定性的作用,因而不能忽視。使得水平荷載比豎向荷載更起決定性作用的主要原因在于,高層建筑物的自身重量和使用荷載在豎向構件中能夠引起的軸力和彎矩的數值,僅僅與建筑物的高度一次方成正比,而水平荷載對結構產生的傾覆力矩以及在豎向構件中引起的軸力,與建筑高度兩次方成正比。
(2)側移是設計的重要控制指標。在高層建筑結構設計中,結構側移是高樓結構設計中的重要控制因素,這一點與低層建筑不一樣。當樓房的高度不斷增加的時候,水平荷載下的結構側移變形會逐漸拉大,這就給高層建筑的穩定性造成了一定的影響。因此,在設計高層建筑結構的時候,應該將水平荷載作用下的側移控制在一個限度之內。
(3)抗震設計要求較高。在高層建筑結構設計中,對于抗震設計的要求顯得更高。一般來說,除了要求抗震設防的高層建筑有普通的豎向荷載、風荷載以外,還應該促進結構設計具有良好的抗震性能,達到小震不壞,大震不倒的目的。
(4)軸向變形需加以重視。在高層建筑中,豎向荷載數值變大的時候,會在柱內產生較大的軸向變形,使得連續梁彎矩發生變化,讓連續梁之間支座處的負彎矩值變小,還會對預制構件的下料長度造成影響。因此,在進行高層建筑結構設計的時候,要對軸向變形的數據進行仔細計算,對下料長度進行有效的調整,防止高層建筑的軸向變形數據不斷拉大。
2 高層建筑結構設計的原則
高層建筑結構的設計是一個復雜繁瑣的內容,其中需要注意的內容涉及也十分廣泛,根據多年的工作經驗總結,主要集中在以下幾個方面:
2.1結構方案的選擇
合理的結構設計方案對于工程來講是十分關鍵的,好的設計方案在滿足結構形式和體系的基礎上,還要充分考慮造價成本,把經濟適用發揮到最大程度。結構體系的最基本的原則是受力明確、傳力簡單,結構方案在滿足使用、安全要求的基礎上,盡量的簡潔。最終結構方案的確定,需要對地理條件、工程設計需求、材料的選擇和施工條件等進行全面的考量和整合,并且和建筑水、暖、電各個分項相互協調,綜合各方面因素進行最后的確定。
2.2計算簡圖的選擇
計算簡圖是進行高層建筑結構設計的基礎,是所有計算數據的出處和根源所在。關系到各環節的建筑尺寸和誤差。如果不能選擇合理的計算簡圖,對于結構安全就會埋下隱患。因此,高層建筑結構設計的安全保障前提,就是合理計算簡圖的選擇。同時,在選擇了計算簡圖之后,還應該采用相應的構造方法保證其安全性。在結構的實際施工中,結構節點不單單是鋼節點或者鉸接點,要使得計算簡圖的誤差在規定的允許范圍之內。
2.3 計算結果要進行準確的分析
科技的發展也推動建筑領域不斷的進步,計算機作為現在科技發展的集中產物,自然在建筑結構設計中也得到了廣泛的應用。經過幾年的發展,市場上的計算機軟件種類和數量都大大提升,但問題也隨之涌現出來,很多時候,統一種類的計算數據在不用軟件中處理產生的結果并不一致。這就對計算數據的準確程度提出了嚴苛的校對要求,也對結構設計人員的能力提出了更高水平的要求。在全面了解軟件的使用范圍和條件的基礎上,選擇最為合理準確的軟件也成為設計人員必須完成的課題。與此同時,建筑結構受到各種不可掌控的實際情況制約,與計算機得出的理想結果不能達到完全的吻合,因此在計算機輔助設計的同時,設計人員的主導能力還是最為關鍵的。
3高層建筑結構設計中關鍵要點分析
(1)扭轉問題設計。要求高層建筑的結構設計必須三心盡可能匯于一點,即建筑結構的剛度中心、幾何形心、結構重心三心合一。倘若在設計中未很好地做到三心匯聚一點,建筑易發生扭轉問題,并在水平力作用下造成高層建筑結構的毀壞。
(2)抗風結構設計。高層建筑由于其具有樓層多,高度高的特點,因此相比較其他建筑,在建筑物表面更易改變風的流動性和空氣的動力效應。在樓層柔軟部分風和空氣會產生動力形式和靜力形式,并由此產生的震動,會對樓層的墻體、裝飾結構以及支撐結構產生破壞,危害建筑的穩定性,所以在進行高層結構設計的過程中,應該進行抗風結構的設計,杜絕建筑物在自然因素的影響下留下隱患。
4高層建筑結構設計問題的有效對策
4.1合理設計平面布局
高層建筑結構設計過程中,扭轉問題出現的原因是由于三心未合一導致的建筑物質量分布不均勻。所以在設計過程中,相關設計人員對高層建筑應當采用相對規則的圖形,例如正方形、矩形、圓形、正多邊形等較為簡單、分布均衡的平面形式。盡量不采用L形、T形、十字形等復雜平面形式。在環境要求或結構要求特殊情況下,應當根據相應規范進行設計,避免建筑結構突出部分過大,同時盡量保證結構的對稱性。
4.2優化抗風結構設計方案
針對高層建筑結構抗風結構存在的難點和問題進行優化。一是基礎優化。要保證高層建筑結構的抗風性良好,首先要保證高層結構的基礎牢固。二是增加高層建筑耗能結構設計。在高層建筑結構設計過程中,對相應非承重構件利用耗能構件如樓板、剪力墻等來抵消風能對建筑的影響。三是減小水平荷載和風力疊加對高層建筑的影響。四是增大結構承載力和抗風力。根據相關數據進行高層建筑結構承載力驗算和抗風力驗算,在此基礎上制定一個放大系數,進一步保證高層結構的抗風性能。
4.3優化抗震結構設計方案
當今高層建筑結構的抗震設計存在很多問題和難點,結合相關設計經驗總結了集中抗震結構的優化方案。一是合理布置抗側力構件。二是增加地基抗震能力。三是設計高性能剪力墻。高性能剪力墻的設計能夠有效地提高剪力墻在地震過程中吸收建筑內力的能力,可以適當增加墻體和樓板的剛度來控制建筑位移,達到抗震目的。四是進行高層結構構件的簡化和一體化。通過對扶壁、筒口、筒腳的簡單化設置,達到相應建筑物的對稱。
4.4加強消防結構設計
當下很多大型火災、恐怖襲擊等惡劣事件已經讓高層建筑的消防結構設計面臨必須改善和加強的地步,但是消防設計應該從消防結構設計和使用期間消防規范來共同執行。在高層建筑消防結構設計過程中,應該加強對防火結構間的距離控制,在符合當地的地形條件基礎上,高層結構在防火結構間距離上可適當加大處理。在材料使用上,可以盡量減少易燃材料的使用,同時增加耐火材料的運用來達到防火目的。另外,良好的疏散系統是保證火災發生之后減少人員損傷的重要保證。高層建筑的疏散系統呈垂直狀態,容易導致疏散效率不高的問題出現。在消防結構設計時,可以通過設置雙通道疏散,增設防煙區、耐火區、避難層等設施來增加消防能力。同時,高層結構可以通過設置相應的隔離結構來有效地控制火勢蔓延,增強建筑消防安全能力。
參考文獻:
[1]柳奕成.高層建筑混凝土結構設計[J].江西建材,2014(04):20-21.
【關鍵詞】高層建筑;結構設計;扭轉;受力性能;結構方案;計算簡圖
中圖分類號:TU208 文獻標識碼: A
前言
高層建筑的出現是科技發展、社會進步、建筑行業提升的重要標志,當前,國家和城市發展越迅速,高層建筑的數量和層次就越高,很多大城市已經開始了超高層建筑的設計和施工,并已經逐漸成為一種社會和行業發展的趨勢。在這樣的趨勢下,高層建筑結構設計工作就顯得尤為重要,在設計工作中要通過科學的手段、統籌的方法和高超的技巧將設計的合理性、安全性和需要的廣泛性和差異性有效地統合在一起,滿足從行業到社會,從個人到集體,從需要到發展等各方面的需要。當前,各界為建筑行業提出了做好高層建筑結構設計的要求,因此,在高層建筑結構設計中要了解高層建筑結構的特點,注意設計中的要點,重點對高層建筑結構的扭轉和受力性能進行關注,在堅持安全、質量和經濟的原則下,提升高層建筑結構設計的水平。
一、高層建筑的結構特點
1、重視對待軸向變形。高層建筑中,由于豎向負荷較大的原因,可能會引起在柱中較大程度上的變形,從而對連續梁、彎矩產生比較大的影響,該影響包括兩個方面:一方面是,會增大端支座負彎矩的數值或者是增大跨中正彎矩的數值,另一方面是,減小連續梁中間支座的負彎矩值。除了這兩方面的影響外,還會影響預測構件的側移和剪力,以及影響構件的下料長度,對于對構件的側移和剪力的影響,將其和構件豎向變形相比較,就會得出較為不安全的結果;對于對預測構件下料長度的影響,可以采取根據計算軸向變形數值,然后針對性的對下料長度進行調整分配。
2、重要的高層建筑結構設計指標是結構延性。高層建筑和低層建筑的區別之一就是:在建筑結構方面,高層建筑的結構較柔和,同時也就保障在地震作用下高層建筑的變形更大。為了避免高層建筑在遭受較大沖擊后,在進人高層建筑塑性變形階段的前提下,高層建筑仍可以具有較強的變形能力,也就是避免高層建筑的倒塌,需要在高層建筑結構設計時采取恰當合理的措施,達到保障高層建筑結構具有應對較大沖擊的延性。
3、高層建筑結構設計的決定性因素是水平荷載。一方面,對于大多數的高層建筑樓房來說,豎向荷載基本上是定值,而水平荷載,比如地震作用和風負載,荷載值隨著高層建筑結構動力特性的不同而發生較大程度上的浮動變化;另一方面是,由于高層建筑樓房自身的重量和樓面引起的彎矩和軸力的數值,與建筑物的高度的一次方成正比,而水平荷載產生的傾覆力矩和引起的軸力與建筑物高度的二次方成正比。
三、高層建筑結構設計的要點
1、高層建筑的構造措施
高層建筑結構設計中要重點對剪力、壓力、柱體等相關結構和特性進行強化,同時要加強彎力矩的防護,提高拉力的大小,提升構造梁的性能,要注意對薄弱部位的加強,特別重點考慮的構造要點有:延性、溫度應力、薄弱層厚度,鋼筋錨固長度,抗震結構層次等主要環節,要達到高層建筑結構的設計合理化,就必須做好上述構造方面的設計。
2、高層建筑結構的計算簡圖
計算簡圖是高層建筑結構設計和高層建筑結構計算時的中要基礎,因此,需要選擇適宜的高層建筑結構計算簡圖。在計算簡圖中要對高層建筑結構的剛節點和鉸節點進行重點把握,同時要控制計算簡圖的誤差,使其限定在高層建筑結構設計的允許范圍中。在高層建筑結構計算簡圖的應以中要對構造的重點防護措施進行強化,這樣有利于控制高層建筑結構的穩定。
3、高層建筑結構的方案
結構方案的經濟性、科學性和合理性是整個高層建筑結構設計的關鍵,要采用高層建筑結構的合理形式和經濟形式,這樣可以使高層建筑結構得主要性能和要求達到相應的設計。在方案中要注意豎向和水平向的規則,同時,要注意在同一結構單元內不能應用同樣結構體系和方式,以避免高層建筑結構出現問題。
4、高層建筑的基礎方案
在高層建筑結構進行基礎設計師要重點考慮高層建筑結構的荷載分布、高層建筑工程的地質條件、高層建筑的施工條件。設計高層建筑結構時要重點考慮到對地基潛力的挖掘,因此,在高層建筑結構設計階段要對工程地質勘查報告的內容和技術參數進行重點了解,以便形成具有科學性和合理性的高層建筑結構基礎方案。
四、高層建筑結構設計的基本要求
1、高層建筑結構設計的規則性
高層建筑結構設計應符合抗震概念設計的要求,應采用規則的設計方案,不應采用嚴重不規則的結構體系。高層建筑結構設計應該具備多道抗震防線;具有合理的承載力和剛度分布的結構水平和豎向布置,避免因扭轉和突變效應造成局部薄弱部位。
2、高層建筑結構設計的平面規則布置
高層建筑結構平面布置需要能抵抗豎向和水平荷載,對稱均勻,明確受力,傳力直接,減少扭轉的影響。在地震作用下,建筑的平面要簡單規則,在風力作用下可以適當放寬要求。建筑的抗震設防要求建筑的平面形狀宜對稱、簡單、規則,才能達到減震的目的。
五、高層建筑結構設計問題的防范和處理
1、高層建筑結構設計中的扭轉問題
在進行結構設計時,我們需要建筑的三心盡可能匯于一點,即三心合一。高層建筑結構設計的扭轉問題就是指建筑的三心在結構設計過程中未達到統一,結構在水平荷載的作用下發生扭轉振動的效應。
2、高層建筑結構的受力性能
對于高層建筑物最初的方案設計,建筑師考慮更多的是應該是它的受力性能,而不是詳細地確定它的具體結構。沉降縫兩側單元層數不同時,由于高層的影響,低層的傾斜往往很大,因此沉降縫寬度可按高層單元的縫寬要求來確定。
3、高層建筑結構設計中的其它問題
一是,剪力墻的墻肢與其平面外方向的樓面梁連接時,應采取在墻與梁相交處設置扶壁柱或暗柱,或在墻內設置型鋼等至少一種措施,減小梁端部彎距對墻的不利影響。二是,對各抗震等級框支梁縱向鋼筋的最小配筋率提高了要求,同時增加了最小面積配箍率的要求。三是,嚴格要求各抗震等級剪力墻在各種情況下的厚度與層高。四是,地下室結構的樓層側向剛度不應小于相鄰上部結構樓層側向剛度的2倍。
六、結束語
綜合全文,近些年我國的高層建筑建設行業迅速發展,而高層建筑結構設計是高層建筑建設行業的關鍵因素,高層建筑建設行業的進一步發展,使得對高層建筑結構設計質量的要求越來越高。高層建筑結構設計質量好壞直接影響到整個高層建筑是否具有安全性,直接影響到高層建筑建設行業是否達到可持續發展。本文從高層建筑結構設計的原則人手,對高層建筑結構設計的特點進行詳細的概述,進而引出高層建筑結構設計中應該注意的問題,并對這些問題進行簡單的概括。
[參考文獻]
[1]蔣最.淺探高層建筑設計和城市空間合理化[J].城市建設理論研究(電子版)
關鍵詞:高層建筑,結構,設計,要點
前言
高層建筑本身的特點決定著建筑結構的特殊性,比如結構復雜,建筑施工的工作量很大,施工的周期較長等,所以,如果在結構設計方面發生問題,不但會使得經濟造成巨大的損失,而且也會危及人們的生命以及財產的安全,因此,我們要對高層建筑結構設計要點嚴格把握,并且對工程施工的各種相關因素全面考慮,詳細的分析及把握影響建筑質量的潛在問題,從而采取有效的方法及措施進行防治。
一、高層建筑結構體系
1.高層建筑的剪力墻體系
在高層建筑設計結構體系中,其重要組成部分就是剪力墻,在高層建筑承受風荷載或高層建筑承受地震作用方面,剪力墻有著積極性的作用。因為其不僅對結構中水平構件所產生的豎向荷載能夠承擔,而且對外部因素所引起的振動作用也能夠承擔。
2.高層建筑的框架―剪力墻體系
高層建筑中常見的結構體系就是框架―剪力墻體系,垂直荷載的力量是框架所能承受的,而剪力墻所承受的則是水平剪力。剪力墻的設置不僅能夠在很大程度上增強建筑的側向剛度,使其水平位移變小,而且還能夠使框架所受的力實現均勻分布。
3.高層建筑的筒體體系
高層建筑筒體結構體系由框架―剪力墻結構與全剪力墻結構綜合演變和發展而來。筒體結構體系是將剪力墻或密柱框架集中到建筑的內部和而形成的空間封閉式的筒體。其特點是剪力墻集中而獲得較大的自由分割空間,目前在高層建筑中被廣泛應用。
二、高層建筑結構設計要點分析
1.選擇合理的結構方案
高層建筑的結構設計不僅要具有較高的經濟性,更要滿足使用性及合理性,因此在進行高層建筑結構設計時,首先就要選取一種既可行又滿足較好經濟性的結構形式及體系。其中要注意如下問題:首先在同一結構單元中,最好不要混合使用不同的結構體系,同時還要綜合考慮使用要求、地理環境及施工條件等實際情況,還要協調好建筑電氣及水暖等配套設施的設計,從而選擇最優的建筑結構體系。
2.選擇合適的基礎方案
綜合考慮高層建筑物的上層結構類型和地基的承受能力,對建筑物的結構設計。盡量充分利用地基的承受強度,建筑合理的高度,必要時要求進行地基變形的檢驗。根據當地的地質調查結果,對高層建筑結構基礎設計。建筑設計人員在進行建筑地基基礎設計的時候,必須要根據當地的設計規范標準,由于我國各個地方都會有自己地區規劃制定的《地基基礎設計規范》,各個地區制定的規范對建筑結構設計師在設計時有著非常重要的幫助。
3.選用適當的計算方法及簡圖
在高層建筑結構設計中,要注重相關計算方法的選擇,以保證強度等計算結果能夠滿足真實情況,從而更好的為結構設計提供依據。此外,由于建筑結構設計是在結構計算的基礎上開展的,一旦計算方式不準確,導致計算結果有誤,就會嚴重影響高層建筑的結構設計質量,更可能造成安全事故的發生,并帶來巨大的損失,因此在高層建筑結構設計中,要注意相關計算方法的選擇及計算簡圖的選取。同時,計算簡圖還應有相應的構造措施來保證。實際結構的節點不可能是純粹的鉸結點和剛結點,但與計算簡圖的誤差應在設計允許范圍之內。
4.正確分析計算結果。
計算機技術是在結構設計中普遍采用的技術,但是隨著目前軟件種類繁多,軟件的不同往往也會導致計算結果的不同。所以,設計師要對程序的適用范圍以及條件進行全面的了解才可。設計師在拿到計算結果時一定要對其認真分析,并且慎重的校核,其原因是計算機在輔助設計時常常會因為結構實際情況與程序不相符合,或人工輸入有誤,或軟件本身有缺陷從而導致計算結果錯誤,這就需要設計師以此做出合理判斷。
5.采取相應的構造措施
“強柱弱梁、強剪弱彎、強壓弱拉原則”是在進行高層建筑結構設計時需要牢記的,并且一定要注意構件的延性性能;對薄弱部位加強;對鋼筋的錨固長度也要注意,更要注意的就是鋼筋的執行段錨固長度;同時對溫度應力的影響力等也要考慮。
6.高層建筑結構抗震設計
由于高層建筑的樓層數較高,特別是某些超高層建筑,如果遇到如地震等災害時,其抗震能力得不到有效的保證,就使其變形及破壞力都會遠遠的大于其它類型的建筑,因此要綜合多方面因素,全面的提升高層建筑的抗震能力。
首先要注重地基的選擇及設計,高層建筑最好應建筑在土地較硬的地區,并遠離河岸,同時還要注意,不要在斷層或地陷等較易發生地震的地區建造,如果地基選擇不合理很可能影響到其抗震能力。其次,在設計階段還要注重建筑材料的選取,將鋼筋與混凝土結合在一起的建筑形式主要是利用鋼筋與混凝土具有相似的膨脹系數,在任何環境下都不會產生過大的應力,同時這兩者之間的粘結性很好,特別是將鋼筋表面預置肋條或在鋼筋的端部彎起彎鉤,可大大的提高鋼筋與混凝土之間的拉力,可以更好的提高建筑的強度及抵抗外力的能力,從而更好的滿足人們的使用要求。而在高層建筑的設計施工中會在框架結構中融入一定的剪力墻結構,從而更好的實現不同建筑的功能及相應的強度要求。
結束語
綜上所述,我國城市化建設速度的不斷加快,使得提高城市土地利用率的相關問題越來越被社會所重視,與此同時,各種形式的高層建筑拔地而起,從而緩解了城市居民住房緊張問題,但是由于高層建筑本身的結構特點,決定著其相應的結構設計必須滿足一定的強度及使用要求,這對建筑設計師來說是一項艱巨的任務。要想保證高層建筑施工質量,首先在結構設計階段就要保證其設計方案完全符合國家的相關標準,并結合其實際用途,抓住設計要點,并對較易發生的潛在問題的設計進行及時排除,確保施工方案得以順利的展開,從而保證整體高層建筑的施工質量,為人們的正常使用提供較高質量的保障。
參考文獻