時間:2023-08-08 16:45:55
序論:在您撰寫大學數學統計學時,參考他人的優秀作品可以開闊視野,小編為您整理的7篇范文,希望這些建議能夠激發您的創作熱情,引導您走向新的創作高度。
遼寧省高等教育學會“十二五”高等教育研究2013-2014年度課題“深化大學生數學創新活動實施與效果評價”(GHYB13172)、
大連市社科聯(社科院)與大連市高校工委2013—2014年度聯合立項課題“大連市大學生科技創新活動現狀及對策研究”(2013dlskybgx45)
【摘要】眾所周知,大學數學是大學四年學習期間的重要課程,是一門除文史類專業以外,各個專業都要學習的必修課程,該門課程的學習為學生們獲取高等數學,基礎統計學,基礎線性代數知識提供最根本的基礎,近幾年,各個大專院校已經將統計學的學習深入滲透在大學數學的課堂中,這不僅僅是為了要給予學生們更廣闊的知識面,更是為了要提高大學數學與統計學結合的應用性,提高學生們利用統計學解決數學問題的基本能力,讓學生們學會運用計算機軟件進行統計學操作,將數與型巧妙的結合起來,培養學生們的理論素質和實踐技能.本文將就此展開論述,具體說明大學數學與統計學相結合的必要性及應用技巧.
【關鍵詞】大學數學;統計學;技巧
一、大學數學與統計學的異同分析
1.大學數學與統計學的共同點
(1)理論基礎相同
大學數學作為大學課堂中的公共必修課,它包含著無窮的力量與解決大量問題的根源,而統計學作為大學數學中不可分割的一部分,也擁有著迷人的魅力,它們有著共同的理論基礎,它們都是以變量為研究對象,用觀察到的或者已知的數據經過計算得到我們想要的結論,無論是大學數學還是統計學,解決問題而得到的結論都是以數據為基礎的,并且是以數據為核心解釋結論的.從而,我們可以得到一些客觀現象的發展規律,并為其進行合理的解釋.
(2)解決問題的方向相同
大學數學和統計學的學習都是要在數字的基礎上,尋找變量之間的依賴關系,這種依賴關系可以體現為函數,等式,不等式,方差,標準差等等.二者在學習的過程中雖然是分開進行的,但是它們對于人類社會卻體現著相同的作用,大學數學和統計學都是用數字的形式來解決問題,在自然科學,社會科學,工程技術,管理學,金融學等各個方面發揮著重要的作用.
2.大學數學與統計學的差異點
(1)計算方法不同
大學數學和統計學的不同之處主要是計算方法不同,大學數學的計算方法比較多元化,它包括數形結合方法,極限求值方法,分布討論方法,輔助線法,假設法,公式法等,而統計學的計算方法比較單一,主要是依靠數據的大量收集,匯總,利用固定的統計學公式進行基本的求解,近幾年,由于社會經濟的不斷進步,出現了很多繁雜的經濟統計及工程統計問題,這些問題的解絕不是只憑簡單的動筆計算就能解決的,因而,現在的大學課堂中的統計學學習引進了計算機統計學軟件操作的辦法,運用計算機嵌入統計學公式,并進行計算的方法已經深入人心.
(2)學習內容不同
大學數學與統計學的另一個不同點是學習的內容不同,雖然二者的理論基礎相同,解決問題的方向相同,但二者所學習的主要內容還是有差異的,大學數學所學習的內容主要傾向于函數,積分,線性,向量等的抽象計算.而統計學分數理統計和經濟統計兩個方向,其中數理統計是屬于數學里面的一個分支,經濟統計是偏向統計學知識在經濟中的應用的.它所學習的內容只要傾向于事件的統計,概率的計算與分析等形象的計算.
二、大學數學與統計學結合的技巧分析
1.利用大學數學的估算進行統計分析
在很多利用統計學解決的實際問題中,都會發現數據很難收集的情況 ,由于現實環境的影響,我們往往不能準確的數據收集起來,也無法準確的將數據與統計公式中的未知量一一對應,然而解決這一屏蔽的技巧是利用大學數學中的估算方法,將數據合情合理的進行分區域收集,將收集到的數據進行估計.估算出適合我們代入公式計算的形式.這一方法不僅可以減少計算中的麻煩,還可以節省時間,提高效率.
2.利用大學數學的數形結合進行統計分析
數形結合思想是古往今來流傳最為長遠,應用最為廣泛的思想,數型結合思想是將數據與圖形恰當的結合在一起,用圖像直觀的詮釋數據的含義,有數據對圖形進行科學的證明.這是統計學中最為常用的技巧之一,在利用統計學解決經濟問題時,我們常常會遇到繁瑣的大量的數據,例如,比較兩種股票在同期交易日中的股價及受益值等,這樣的問題看似簡單,但需要我們將收集到的大量數據進行匯總,一一列出,并計算各自的收益值,這是一個簡單易懂的問題,但是在操作過程中會由于數據的龐大而容易出錯,我們可以借助在計算機上畫出表格圖形的方法,嵌入公式,進行計算,這種計算方法既簡單又快速.
3.利用大學數學的公式法進行統計分析
公式法是大學數學中的靈魂,是貫穿整個大學數學學習的基礎,由于大學數學與統計學的理論基礎相同,所以,我們可以借助公式法來為統計學的計算提供理論條件.例如,在計算偏斜度與矩偏度系數等一些復雜問題時,我們會發現統計學公式很繁瑣:
此時,我們需要借助大學數學中的公式法計算法則及技巧,對這些繁瑣的統計學公式進行拆分或者整合,最終得出答案.
【參考文獻】
關鍵詞:統計學;大數據;利用;發展
統計學是通過搜索、整理、分析數據等手段,以達到推斷所測對象的本質,甚至預測對象未來的一門綜合性科學。其中用到了大量的數學及其它學科的專業知識,它的使用范圍幾乎覆蓋了社會科學和自然科學的各個領域。隨著統計學發展的同時,一個大規模生產、分享和應用數據的時代正在開啟:大數據的真實價值就像漂浮在海洋中的冰山,絕大部分的數據都隱藏在表面下等著人類去探索。
1 利用所有的數據
在傳統的統計學中,由于記錄,存儲,分析數據的工具不夠好,所以總是傾向于從總體中抽取樣本來分析,因為統計學的一個目的就是用盡可能少的數據來證實可能重大的發現。統計學家證明:采樣分析的準確性隨著采樣隨機性的增大而大幅度提高,但是與樣本數量的增大關系不大。當樣本數量達到了某個值的時候,從新個體身上得到的信息會越來越少,就同經濟學中的邊際遞減效應一樣。
在大數據時代,不使用隨機分析的方法,而是采用所有的數據。即“樣本=總體”。統計抽樣其實只是為了在技術受限的特定時期,解決當時存在的一些特定問題而產生的。慢慢的,就會拋棄樣本分析。
2 接受不精確
對小數據而已,統計學已經可以把數據處理的很好了,但是在大數據時代,太多的數據使原始統計方法捉襟見肘,因為數據量的大增會使得結果不太精確。執迷于精確性是信息缺乏時代和模擬時代的產物,只有接受不精確性才能進入我們從未涉足的鄰域。接受不精確是從“小數據”到“大數據”的重要轉變之一。因為擁有更大的數據量所帶來的利益遠遠超過增加一點精確性,所以也就能夠接受不精確的存在了。要想得到大規模數據帶來的好處,混亂應該是一種標準途徑,而不應該是盡量避免。
3 追求相關關系而不是確定因果
在小數據時代,相關關系也是有的。統計分析的目的在于如何根據統計數據確定變量之間的關系形態及其關聯的程度,并探索其內在的數量規律。人們在實踐中發現,變量之間的關系分為兩種:函數關系和相關關系。相關與回歸是處理變量之間的一種統計方法。變量之間存在的不確定的數量關系,稱為相關關系。一般來說,可以用散點圖和相關系數來描述和測度相關關系。
相關關系的核心是量化兩個數據之間的數理關系,它沒有絕對,只有可能性。大數據的相關分析法更準確,更快,而且不易受偏見的影響。知道是什么就夠了,沒必要知道是什么。通過探求“是什么”而不是“為什么”,相關關系幫我們更好的了解這個世界。如果凡事皆有因果的話,那么我們就沒有決定任何事的自由了。
4 數據的來源并非那么簡單
在一般看來,要想得到一些你所需要的數據是需要通過各種不同方法測量或是記錄才能得到,而有時候,數據會從你意想不到的地方得到。也許你精心地設計了你的實驗或是探究,但是到了真正操作才會發現事情并不像你想象的那么簡單。
首先,由于在大數據時代,數據不是那么的有規律,所以才要考慮數據的一系列問題。這些數據或是資料是不是一定要自己去得到,或是可以參考別人已經有過的結果,這樣可以節省精力和時間。如果是參考別人的數據要考慮時效性和使用范圍。也許不是專門為你的設想而準備的數據。大的數據庫有著小數據庫所沒有的價值,大數據的核心就是挖掘出大的數據庫所擁有的獨特的價值。
5 數據的利用方式
在統計學中,對數據的利用不僅包括對數據求平均值,方差,分位點,可以的話還要得到數據中的某種關系或是聯系,如父母的身高會不會對下一代產生影響,不僅要分析父母的身高,還要分析孩子的身高,從中發現有沒有相關關系,得出自己的結論。
在大數據時代,數據沒這么簡單的讓你下手,所以對數據的利用方法也隨著情況的不同而不同。數據的用途已經從基本的用途移動到了二級用途,使得數據隨著時間的推移而變得更有價值。明白了隱藏在冰山下面的絕大部分數據的價值后,創新型企業就能夠提取其潛在價值并獲得潛在的巨大收益。盡管如此,數據再利用的重要性還沒有被充分認識到。要解鎖這些數據,就必須通過新一代統計人員的不懈努力并借助新一代的方法和工具。
隨著大數據的出現,數據的總和比部分更有價值。將數據的總體組合在一起,重組組合本身的價值也比單個更大。如果決定使用有生產價值的數據,就需要不斷的更新數據庫并淘汰無用的信息。即使數據基于基本用途的價值會減少,但潛在價值卻仍然強大。潛在的數據價值需要通過創新的分析來釋放。不出意外,給數據的潛在價值貼上價格標簽會帶來無限商機。
6 小結
個人認為統計學和數據挖掘一起可以更好的利用數據。一個可以對數據進行有效合理的分析,一個可以用多種多樣的算法來更好地處理數據。在大數據時代,重要的是數據自身和大數據的思維觀念。如果能做到數據,技能和思維三者具備,就能更好地服務于大數據時代,就能在大數據時代有非常大的競爭優勢。
參考文獻:
大學數學教學大綱
課程代碼318.009.1編寫時間
課程名稱數理統計
英文名稱Statistics
學分數3周學時3+1
任課教師*徐先進開課院系**數學學院
預修課程
課程性質:
本課程為數學學院本科生開設,是概率論基礎的繼續,介紹數理統計學的基礎知識。
基本要求和教學目的:
課程基本內容簡介:
數理統計是一門理論研究與數學實踐相結合的學科,它區別于概率論基礎部分,不從概率空間出發,而是考慮如何給隨機現象裝配一個概率空間。
數理統計學研究數據資料的收集、整理、分析和推斷,廣泛地應用于社會科學、工程技術和自然科學中。
教學方式:
教材和教學參考資料:
作者教材名稱出版社出版年月
教材概率論,第二冊,數理統計(兩分冊)人民教育出版社1979
參考資料陳希孺數理統計引論科學出版社1981
峁詩松,王靜龍,濮曉龍高等數理統計高等教育出版社,施普林格出版社1998,2003
J.O.BergerStatisticaldecisiontheoryandBayesionanalysis,2ndedition
中譯本:賈乃光譯,統計決策理論和貝葉斯分析Springer-Verlag,NewYork
中國統計出版社1985
1988
教學內容安排:
第一章引論
本章的教學目的是闡述數理統計學的基本問題,介紹數理統計學的基本概念。指出了現階段的教學內容是研究如何利用一定的資料對所關心的問題作出盡可能精確可靠的結論,而不是考慮如何設計獲得數據的試驗。
統計量是從數據中提取信息的工具。本章介紹了兩種常用求估計量的方法,介紹了刻畫統計量性能的一致最小方差的概念。
§1統計學的基本問題
§2數理統計學的基本概念
§3求估計量的兩種常用方法
§4一致最小方差無偏估計
第二章抽樣分布
本章假定待研究的母體服從最常見的正態分布,導出了常用統計量,,的分布。本章的結論是對小樣本討論的,由于正態分布的特殊性,它們也可作為大樣本情形的極限分布。
本章還介紹了與正態母體相聯系的柯赫倫定理與費歇定理。
§1正態母體子樣的線性函數的分布
§2分布
§3分布和分布
§4正態母體子樣均值和方差的分布
第三章假設檢驗(I)
本章的教學目的是讓學生認識到參數估計、假設檢驗和區間估計是針對問題的不同性質而作的三種統計推斷,掌握并正確理解顯著性檢驗問題的處理步驟。在本章的執行過程中,給出了一些典型的假設檢驗問題的分析和理解,以幫助學生掌握和運用這一統計思想。
本章介紹了具有一般意義的廣義似然比檢驗。
§1引言
§2正態母體參數的檢驗
§3正態母體參數的置信區間
§4多項分布的檢驗
§5廣義似然比檢驗
第四章線性統計推斷
本章主要討論數理統計學中兩類重要的問題,線性模型和回歸分析,介紹了處理另一類問題的方差分析。在數學過程中,解釋了在復雜問題中使用線性模型的合理性,也分析了統計假設在實際問題中的意義。
在本章的執行過程中,比較了回歸分析與線性模型的異同點。
§1最小二乘法
§2回歸分析
§3方差分析
第五章點估計
本章從理論的角度討論了一致最小方差無偏估計的性質。介紹了一些尋找一致最小方差無偏估計的方法。
§1最小方差無偏估計
關鍵詞:大數據;統計學;教學改革
伴隨著網絡信息計算的急速發展,各領域數據以迅雷不及掩耳之勢的速度不斷更新,同時人們對數據的看法也在不斷變化,采取的決策也在不斷深化,人們在各個領域做出的決策都在由“以業務為中心”向“以數據為中心”轉變。有人說,獲取數據的人將獲得世界的青睞,因此,對數據的統計與分析能力是當今一項非常重要的技能[1]。
統計學作課程作為各大高校開設的一門必修課,在學生接受的課程教育體系中起著重要的基礎作用。同時隨著各行各業數據分析的深入,高校統計學課程也必須順應時展,進行教學改革,力爭培養能畢業后與各行業順利對接、有較強數據分析能力的人才。
一、當前統計學課程教學中存在一系列問題
當前,統計學課程教學中有一些不盡如人意的地方,無論是教學大綱的編制、教學進度的安排還是教學中采用的軟件應用性上,都有一些小問題,給教學工作者帶來很多困惑。
(一)教學大綱內容多,教學時長卻較以往更短
高校一般每學期都會就下一年上統計學課程的該年級學生編制教學大綱,大綱內容全面、綜合,涵蓋了幾乎統計學教材中的全部知識。統計學知識點包括導論、數據的收集、整理、分析、抽驗分布、參數估計等。內容多,且覆蓋范圍廣,且要求學生有較好的數學基本功,能快速理解、掌握每個公式和理論背后的含義。同時,為提高學生處理數據的能力,大綱中還要求給與一定數量的實訓學時,要學生掌握SPSS,SAS等統計軟件。目標很好,希望學生能真正掌握統計學課程的精髓。只是時間太有限,學校分給學生學習統計學課程的時長只有48學時,有一學期甚至壓縮到了32學時,課堂教學時明顯感覺時間緊,無法詳細講述書中的重要知識點,課堂上老師只能走馬觀花的講講重點,學生聽的也是懵懵懂懂,知其然不知其所以然,不能理解定理、公式背后的含義,學習效果沒有想象中好[2]。
(二)學生基本功不扎實
統計學課程本質上是采用的數學方法,其理論基礎是微積分和概率論基礎等數學系課程。對于非統計專業的學生而言,數學課是從小就伴隨著他們的噩夢,從小就缺乏學習數學、利用公式解決問題的興趣。進了大學后,更為枯燥、深奧的符號在他們看來更是一場莫名其妙的游戲,內心不愿參與到這場游戲中,只能形式上聽一聽,至于老師上課時傳授的內容和精髓,則根本不曾記住過。薄弱的數學功底導致了他們在學完微積分、概率論后接觸統計學課程時無法理解統計學里的基本知識,甚至大數定律、中心極限定理這些最基本的統計知識他們都無法理解其深意。
(三)學生以考試及格為目標,重理論輕實踐
統計學考試方式為理論考試,無上機操作考試。雖然教學大綱中明確要求有一定比例的實訓學時,只是由于統計學課程知識點繁多,有些老師為講完理論知識,不得已壓縮學生上機操作的時間。而大部分學生上統計學課的目的是為了及格,也不重視統計軟件的操作,導致通常一學期的課結束了,學生還不會使用SPSS軟件進行聚類分析。造成了學生處理數據的能力非常差,進入企業工作后一定要接受額外培訓才能分析數據,這與企業所需人才嚴重脫節。
(四)教學方法陳舊,不能采用新型教學手段
現在的統計學課程幾乎還是采用滿堂灌的填鴨式方法教學,老師在課堂上講,學生在課堂聽,整堂課下來,老師筋疲力盡,學生聽得味同嚼蠟,有些地方沒跟上老師節奏的,后面便再也不去聽了,課堂效率低。如今互聯網時代,很多新的教學方法應運而生,如微課+翻轉課堂、對分課堂等,且這些方法是行之有效的,可以調動學生學習能動性。而統計學課堂卻沒有采用這些教學方法。
(五)統計學教材與當今大數據時代脫軌
很多高校給學生上課前選教材時都會選國家級規劃教材,希望這些教材能保留統計學的精髓知識的同時,也順應當今大數據時代的要求,傾向于講述提高學生數據處理能力。只是老師們在選教材時還是會發現兩難全。
統計學教學中有很多亟待提高的地方,基于此,統計學教學改革勢在必行。
二、統計學教學改革措施
大數據時代,統計學課程可充分利用時代給予的“數據”紅利,充分發揮工具的作用,將統計學中的方法充分與數據結合,使學生能自如運用統計學知識處理數據,并挖掘數據背后的含義。統計學教學改革可側重以下幾個方面:
(一)編制合適的教學大綱,制定相應的教學時長
教學過程中一定要分清重點,主次分明,不能什么都視為很重要的知識點。適當調整授課節奏,重點知識重點講解,非重點知識可一語帶過甚至不講,編制合理的教學大綱。同時教學中注意盡量減少一味的講公式、定理,要針對性教學,針對非統計學專業的學生,可盡量減少講解定理的證明,多講些現實中定理的應用,可穿插案例教學。講授過程中慢慢引入統計工具與技術,力爭理論與實踐相結合,以適應大數據時代分析數據的需要。另外,可制定合適的教學時長,32學時只是入門級教學,可根據學生的專業適當延長學時。
(二)重視上機操作,提高實踐操作的重要性
大部分非統計學專業的學生上統計學課是因為必修,為了修學分而上這門課。本著及格即萬歲的小算盤,課堂上玩手機睡覺,平時得過且過,考前學習一下老師畫的重點題,一學期輕松飄過。為讓學生真正掌握統計方法,成為新時代需要的人才,可提高上機操作占學生成績的比重,增加實訓課時,并給學生分配任務,學會用主成分分析處理哪些問題,學會SPSS中的哪些統計方法。每次實訓課結束前,要求學生上機演練一遍得出結果方能下課。且上機操作的表現可折合成平時成績,作為學生總成績的一部分;或者期末考試前會有一次上機操作考試,分數作為總評成績的一部分。大數據時代,學生們一定要有使用簡單的基礎軟件對數據處理的能力。而能力的培養,除了學生本身的興趣外,還要從制定相應的制度強制學生樹立自我培養的意識開始。
(三)注重案例分析,注重實用性,鼓勵學生參與課題或比賽
統計方法的學習是為了以后更好地應用。為了增加學生學習的能動性,教學中可以通過案例分析的方法,將現實中實際問題和數據作為分析對象,并考慮現實背景,教授學生采用何種統計方法能更好解決問題。這種方法不僅能幫助學生長見識,拓寬視野,更能讓學生切實感受到什么叫學以致用,感受到為未來進入職場積淀知識,力爭成為大數據時代的綜合性人才的重要性。
同時也可鼓勵學生申請或參加課題,培養發現現實問題、采用統計方法分析問題和解決問題的綜合能力,一個課題從開始申請到順利結項,絕不單單只靠幾個分析方法就能解決的,它是對一個人或團隊綜合能力的考驗,涉及到撰寫文案的功底、將現實問題去粗取精后凝練成模型的能力,以及解決問題所采用方法的準確把握的能力等,整個過程需要有計劃的進行,方能有條不紊的將課題完成。
目前,很多高校提供了培養學生創新創業能力的比賽,還有全國數學建模比賽等,這些平臺和機會都可以幫助學生,他們用自身所學的理論和上機操作知識,緊隨新時展,采用先進的數據分析方法,鍛煉解決問題的能力。同時這些實踐經驗反過來正作用于課堂教學,提高學生學習興趣,使學生更加有側重點地學習。
(四)采用翻轉課堂、對分課堂等新型教學方法
經驗告訴我們,滿堂灌的授課方式效果真的不是多好,激發學生興趣,提高學生學習的能動性是關鍵。大數據時代,可以借助互聯網信息技術新方法,利用翻轉課堂、對分課堂等新的教學方法,提供平臺和教學資源,讓學生自主學習,之后可分組討論所學知識,對于不清楚的可自行搜索或者上課討論,課后總結,這樣線上線下教學的方式,使學生主動掌握學習節奏,增強師生之間的互動性。
(五)選擇適合學生的統計學教材
如今市面上的教材數不勝數,如何選擇合適的教材讓教學工作者頗為頭疼。對非統計學專業的學生,可選擇應用性強的近三年教材,側重案例解析和上機操作的,盡量少一些定理、公式的證明,更多的側重于應用,這樣有利于讓學生感受到理論知識的實際應用,培養創造性思維。
三、結語
統計學教學改革不是一蹴而就的,需要老師和學生的共同努力。本文基于當前統計學課程教學中普遍存在的問題,探討了統計學課程教學改革的措施,如授課內容、考核方式等,從而提高教學效果,提高學生處理數據的能力。
參考文獻:
[1]胡云霞.大數據背景下統計學教學改革與創新研究[J].現代商貿工業,2018,29(35).
[2]章政.大數據背景下經管類專業統計學課程教學改革研究[J].創新創業理論研究與實踐,2019(24).
從國家每年生產總值核算、居民消費指數、通貨膨脹率,到美國總統選舉方法是否能代表廣大選民意志,臺灣軍購對亞太局勢影響,再到足球比賽中罰點球時將球射向球門的哪個位置最不容易失手……統計學已經貫穿了我們的整個生活。
統計無處不在
提起統計學,就要先弄清什么是統計數據。日常生活中到處都有統計數據:同學們的考試成績在班級中的名次、班干部選舉時各人的票數量等。統計學應用廣泛,在我國最早的應用領域就是給政府提供了解整個國家的基本運行狀況和制定各種政策法規的參考依據。我們常聽到的一個名詞CPI(消費者價格指數),就是政府通過統計學手段來衡量物價水平和通貨膨脹水平的。如今,隨著統計方法的進步和社會各部門發展對于統籌規劃與決策的需求,使統計學從幕后走到臺前,參與了大量的軍事、政治、政府決策的制定,并為之提供理論依據。統計學就是一門搜集、整理、顯示和分析統計數據的學科,可以形象地稱為“和數據打交道的藝術”。
美國是統計學最發達的國家。幾乎每一個大學生都知道統計這個學科,許多非統計學科都把統計作為必修課,這樣,當人們遇到了統計問題,也都知道如何去尋求答案。因此,統計專業的應用范圍十分廣泛,已成為除計算機專業之外的最好找工作的專業。由于行業需要和立法等原因,醫藥界成了使用統計最多的行業之一,醫藥領域也成了統計方法和理論發展的一個重要源泉,同時生物統計也是統計家族中的一大熱門。此外,工商業、金融管理、市場和民意調查及各級政府工作中同樣大量地、普遍地和經常性地使用統計方法。時至今日,伴隨著社會分工的進一步明細,統計學已細分為數理統計學、教育統計學、生物統計學、心理統計學等分支學科。
各科數學為先 練就宏觀思維
很多同學也許會認為,統計學與傳統的計算機、應用數學、應用物理這類純理科不同,在所學課程上會涉及西方經濟學思想、數理統計學、運籌學等這類偏文科類的知識更多些。而恰恰相反,統計學作為一個完全是和數據打交道的學科,需要的是非常良好的統計學基本方法和邏輯思考能力,而數理統計學、運籌學這些基本統計理論學科需要非常良好的數學基礎。隨著計算機在各個行業的廣泛應用,從事統計行業的人如今還需具備熟練地用計算機操作統計軟件分析數據的能力。這就使得現在的統計學專業加入了許多計算機類的基礎課程,如數據結構、C++語言,JAVA語言等,這下好了,完全成了一個數學系專業了。
當初我在高考填專業的時候首選的是經濟學,抱著方便調劑的心態填了一個自以為是偏文科的統計學,結果被“有幸”錄取。上課第一天拿到培養方案,感覺就懵了,和同班同學交流心態時驚訝地發現大家的感受和我絲毫不差。后來才了解到,部分學校是將統計學和應用數學專業或者是信息與計算科學專業打通培養的(本科一年級和二年級的課程一樣,專業課有些許區別)。
落差歸落差,但在上過前兩年的基礎課(數學分析、高等代數、空間解析幾何、常微分方程、概率論、數據結構等)之后,統計專業同學在數學思維、邏輯思考能力相比于別的專業的同學要強很多。為什么呢,拿經濟學中的國際貿易來作比較,前兩年數學學的是高等數學和線性代數,光看課本,這兩門學科在目錄上無顯著差異。但深入學習之后發現,高等數學著重于計算能力,而數學分析重點在于數學思想的形成,學習中對于同一個理論,更多討論的是它的推導和證明(有些類似高中數學對理科生和文科生的不同要求)。所以,同樣是學數學基礎課,統計學學生花的精力要多得多。一學期晚上看書看到十一二點的日子更是數不勝數,那些外專業所說的豐富多彩的課余生活基本與統計學專業學生無緣。每到數學考試前,統計學學生要玩命似的演算、推導,看著外系的學生把高數的書隨手翻翻就可以及格,那個心情是無比的羨慕啊。
滾過前兩年數學沙場,到了大三后,當面對大量復雜的數據和樣本時,統計學專業的學生更具有大局觀,能從容有效地面對和處理問題。很多如運籌學、博弈論、概率等經典問題會迎刃而解;最短路徑,最小人力如何得到最大效率等在外人看來無從下手的問題,在統計學中就是小菜一碟。之前基礎課的很多經典理論、思想,在通過進一步地學習初級統計學、數理統計、多元統計分析、非線性統計分析這類專業性極強的內容時也會一直使用。這些思想和理論在我看來,對于其他課程的學習也是大有裨益的。人們都說,學數學的邏輯性強,自己學過之后才有體會。我在大三的時候也嘗試去涉獵西方經濟學知識,后來發現思考能力比大一時進步很多。
統計學教會你的是一種放之四海而皆準的思維方式,故而周圍很多同學在考研深造選擇報考專業時也很廣泛,涉及計算機、經濟、教育學、管理學等等。甚至在做畢業論文時,選題也不用拘泥于傳統的方程、概率等課題,可以從生物、經濟、人文的多個方面入手。我的畢業論文就從交通與國民生產總值的相關性進行研究,涉及了統計學,經濟學,運籌學等多個學科,論文完成之后覺得知識層次又更上一層樓?,F在回想起來,前面的基礎課如同學習如何使用工具,在學習過程中注意對數學思想的體會,對知識的總結,整個人的邏輯水平就會在不知不覺之中得到升華和提高。待到應用時,學習就一下子變得多姿多彩了。
專業崗位,可“跨界”考證
除了傳統的報考公務員進入統計局或者稅務,工商系統之外,給機構做數據挖掘和分析的統計公司、各大銀行、金融機構等都是統計學專業畢業生的潛在就業單位。醫學統計雖然在中國國內目前應用情況還不普遍,但在國外應用已經相當廣泛而且是一個很受立法重視的行業,但可以預見這將是統計專業發展的方向之一。因為統計學接觸到的都是行業中最本質最核心的東西――數據,所以統計學做的一部分活在外人看來難以精通,外專業人員難以替代。主要的崗位是研究院,可以再市場研究項目的管理和運作中發揮作用,數據是不會說謊的,通過數據分析得到的結論,對行業乃至社會變化都是是相對準確的。
由于統計學良好的數學、經濟學以及部分管理學基礎,統計學的學生考證“玩過界”也是十分普遍的事情。如你對會計感興趣,可以考個注冊會計師,對證券等金融行業感興趣,就可以參加證券從業資格、銀行業從業資格或者保險行業從業資格考試;如果對精算感興趣,也可以嘗試精算師資格考試,甚至考試場調查類的證書都會增加自己的就業砝碼和精確自己的就業規劃。
關鍵詞: 大數據; 大統計學;創新;教學模式;
中圖分類號: C829. 2
《概率論與數理統計》是研究隨機現象客觀規律的一門學科,由于其理論知識的抽象性和思維方法的獨特性常常造成學生理解和接受上的困難!特別是在大數據與大眾創新雙重背景下,隨著數字化的進程不斷加快,人們越來越多地希望能夠從大數據中總結出一些經驗規律從而為相關的決策提供一些理論依據[4]。因此積極探索概率統計的創新教學模式[2,3],顯得尤為必要!
一、明確教學目標―是教學創新的源泉
高校概率統計學科教學, 對于培養和發展學生的數學素質具有極為特殊的重要作用!在教學中, 我們把教學目標定位在培養和發展學生隨機數學素質,體現在重點培養學生四種思維能力:一是隨機性思維,即以隨機數學解釋客觀世界的偶然性(隨機性)現象的思維。二是公理化思維, 即突出精確性、形式化和符號化。三是模型化思維, 通過建模來刻畫事物本質,是該學科應用的基本方式。四是“大統計學”思維,即認識大數據、收集大數據與分析大數據的思維[4]。
二、整合重組教學內容-使創新建立在優化的知識結構上
創新能力的培養, 總是依托一定的知識來承載。知識是創新的源泉,創新是知識的轉化與整合。根據創新教育特點, 緊緊圍繞培養學生隨機性數學素質和創新能力需要, 精選教學內容,堅持整體優化, 著眼發揮知識結構的整體功效, 注重知識之間的相互聯系, 選擇多方面、多類型的知識,形成創新的知識體系。因此, 可把課程內容整合成三大類知識:一是核心理論知識。主要包括概率論知識、統計學知識、“現代統計分析方法與應用隨機過程等理論知識。二是方法性知識。主要指不確定性分析、隨機分析、統計推斷和大數據技術等方法。三是應用性、前沿性知識。這些知識的學習對培養學生的創新精神和創新能力不無裨益。
三、優化教學過程-體現在創新教學方法上
為了優化教學過程,我們嘗試教學方法與手段的多樣化, 使講授、操作和實踐相結合, 教學時倡導學生將動手實踐、自主探索與合作交流等作為主要學習方式,使學習過程變為一個生動活潑的、主動的和富有個性的過程。經過嘗試,初步取得了成效。
(一) 注重數學思想和方法的教學-選講概率統計史料[1]。引導學生認識其發展歷史,激發其學習的動力!比如通過選講概率統計學家泊松、貝努利、高斯、貝葉斯等對概率統計的貢獻,培養學生的創新意識和重新發現“概率統計”的能力,增強其學習興趣和自信心。
(二)采用案例教學法[3]培養學生的創新思維能力。如選用古典概率公式解決“鞋子配對
收稿日期:
基金項目:國家自然科學基金(11461061)和重慶師范大學博士啟動基金項目(15XLB013)資助.作者簡介:康元寶(1973-),男,甘肅涇川人,講師,博士,主要從事隨機分析和數學教育育研究.
問題”與“概率與密碼問題”等,又如運用“統計估計”思想與“假設檢驗”方法解決“先嘗后買產品的促銷問題”、“吸煙與患癌癥的相關性”;以及用中心極限定理解決“保險公司盈利與虧損的問題”等等。促使學生養成科學創新思維的習慣。
(三)結合實際,培養學生利用概率統計建模能力。從理論的掌握到應用不是一件容易的事情,學生創新能力的培養是一項艱巨的任務。在教學中, 我建議通過成立概率統計學習興趣小組,培養學生創新能力。每周活動1― 2 次,經過指導他們學習的方法,并使之充分認識概率統計的實用性,進而培養其創新能力。如鼓勵學生通過建模來解決一些實際問題。如分析學生學習成績與性別的關系,考察入學成績與在校成績的相關性等;還可拿出一些相應的全國大學生數學建模題讓學生探討研究,如2014 年A 題的城市表層土壤重金屬污染分析問題,可用統計分析等方法解決。這樣更能夠增強學生的應用意識,培養學生的創新能力!
四、轉變評價觀念――實施科學的考核評價
評價是教學過程中非常重要的環節。但過去常常把“考試”作為衡量學生學習結果的工具, “一考定終身”。因此, 出現了教學過程中“教”和“學”的目的似乎純粹是為了“考”的奇怪現象! 這是應試教育的典型特征與悲?。?我們在概率統計創新教學中,需要轉變評價觀念, 堅持“考”為教學服務、為培養創新人才服務, 把考試作為實現教學目標的重要手段, 積極改革教學評價方式, 實施科學的考核評價。徹底改變唯分數論的教學評價體系!實行平時考核與期終考試相結合, 加強平時考核檢查力度。最后通過成績分析和反饋改進教學。如對成績分布情況進行分析, 看是否符合正態分布,利用方差分析判斷學生的學體水平和發展趨勢。經過對每道題的得分情況進行統計分析, 評價學生對每個知識點的掌握情況和運用能力, 找出薄弱環節, 以便對原教學設計進行調整和改進。再對試題和試卷的信度、效度、難度、區分度等進行全面的分析, 利用最小二乘回歸方法檢驗本次考試的質量, 提出改進措施, 以利于科學的考評!此外,也可通^貫徹如下教學創新模式:注重培養學生自主創新、多向發展和學以致用!
參考文獻
[1]. 徐傳勝. 運用實際問題改進《概率統計》教學[J] ,數學教育學報, 2000 , 9 (4) : 91~94.
[2]. 張志勇:關于實施創新教育的幾個問題[J], 《教育研究》, 2000 年第3期.
【關鍵詞】大數據 統計學 挑戰 機遇 教學
【基金項目】貴州省科技廳、貴州民族大學聯合基金(黔科合J字LKM[2011]09號)
【中圖分類號】G642 【文獻標識碼】A 【文章編號】2095-3089(2014)08-0235-01
1.引言
“大數據”時代的來臨和“大數據”處理技術的發展深深的影響著統計學的發展。能否利用傳統的統計理論和統計方法對海量的數據做出快速、準確的處理并獲取相關信息?如何對傳統的統計理論與方法進行改進或探索新的統計理論和方法來對大數據進行挖掘與處理以獲取信息?如何在“大數據”時代背景下培養符合市場需求的統計分析師或數據分析師?如何將“大數據”處理技術融入相關統計學課程教學以促進數據處理與分析技術的發展?這些都是我們在統計學相關課程教學過程中必須思考的一個問題。
2.大數據與統計學
“大數據”隨著社交網絡、物聯網、云計算等的興起而產生。一般認為大數據具有規模性、多樣性、實時性及價值性四個基本特征,包含分析、帶寬和內容三個要素?!按髷祿痹跀祿碓础祿Y構和處理方法方面對傳統的統計分析方法產生了沖擊。第一,在大數據背景下,數據來源不再是原來的簡單抽樣,而是“樣本即總體”,直接將總體作為研究對象。第二,在大數據時代,研究對象也不是原來單一的結構化數據,由于數據的多樣化與規模化,我們更多的是研究非結構數據,采用人工智能來進行數據挖掘和信息獲取。第三,數據處理方法也不是簡單的采用傳統的假設檢驗方法進行研究,特別是對于統計學中的異常點,不再采取以往的丟棄或者平滑處理方式。
“大數據”處理技術對統計學的發展提出了巨大挑戰,但我們必須認識到學科之間的發展是相互交融的,“大數據處理技術”其本質上是數據處理與分析技術,其發展對統計學學科的發展也有積極的一面,同時統計學作為一門獨立的學科,有其自身獨特的學科優勢。首先,海量的數據有利于提高各類統計分析的精度,如減小抽樣誤差等。其次,較之于傳統的統計學方法,現有的“大數據”分析方法難度較大、成本較高、耗時較長。而在實際的應用中,我們關心的不是數據量的多少,而是數據量所蘊含的信息。傳統的統計學分析方法是以較少的數據進行精確度相對較高的統計分析,這是“大數據”分析所無法替代的。另一方面,統計學在數據收集方法、模型選擇、模型假設以及模型診斷方面有很大優勢。而且并不是所有的問題都具有海量的數據,并不是每一個“大數據”問題都適合用現有的“大數據處理技術”來處理。
3.對策與建議
3.1 夯實基礎教學
針對以上的分析我們可以看出,大數據對統計學的發展既是機遇,又是挑戰。因此我們在教學過程中要夯實統計學基礎知識的教學,講清楚統計學的基本原理與基本方法,特別是數據分析與數據處理的基本原理與方法。對于許多傳統領域,如生物、醫藥以及質量與可靠性工程等,我們面對的多是“小數據”而不是大數據,因此基于樣本的統計分析方法仍然是進行此類問題研究的最有效的科學手段。
另一方面,我們要結合大數據技術的特點,對統計學的基本知識進行拓展教育,引導學生思考怎樣將已有的統計學基本原理與方法運用到大數據處理的技術研究中。如在大數據環境下怎樣進行數據的收集、篩選與甄別、存儲與分析等,如何分析并厘清可能的數據來源與范圍,如何建立相關指標體系并對數據進行分類,如何制定或調整相應的統計參考標準,以及如何對依靠非傳統數據源加工生產的統計數據進行規范的統計推斷等。
隨著大數據時代的來臨,各行各業對具有統計背景知識人才的需求必定越來越多。因此,在統計學教學過程中,一定要結合各專業的特點,特別是“大數據”的特點,切實加強統計學的基礎知識教學與拓展教學。
3.2 加強統計學專業軟件教學
“大數據”環境下,對統計人才需求也發生了變化。面對海量的數據與多樣化的數據,一名合格的統計人才或數據分析人才不單需要良好的統計素養與扎實的統計基礎知識,更需要具有數據的存儲與整理能力、計算能力以及數據分析與處理能力等。這就要求在教學過程中,加強統計軟件或數學軟件的教學。
針對傳統的“數學證明+手工計算”或“重理論輕專業統計軟件”的統計學課程教學模式,可將統計軟件或數學軟件融入課堂教學并安排一定的課時上機學習統計軟件,以此提高學生數據處理能力,加深對統計學基本原理的理解與掌握。
在加強統計軟件或數學軟件,如SPSS、R、SAS以及Matlab的教學過程中,要擯棄“會軟件的操作即會統計技術”的思維,要讓學生真正掌握相關操作與相關算法,深入思考算法的實現與相關理論的應用。同時引導學生思考對“大數據處理”的技術要求,包括數據搜集、發掘、存儲以及計算分析過程中的算法與設備要求等,引導學生針對大數據進行軟件升級與開發。
3.3 突出案例教學與實踐教學
大數據的產生和發展源于規模經濟問題或超規模經濟問題的研究。每一個大數據問題的研究都是與實際經濟或社會問題緊密相聯的,因此,在實際教學過程中,要突出案例教學與實踐教學,由易到難,通過案例教學逐步引入大數據的概念以及大數據處理的基本技術,提高學生的分析全局觀以及進行實際數據分析與處理的能力。
教學改革的目的是培養在“大數據”時代背景下,符合市場需求的專業統計人才,而合格的專業統計人才必須具備良好的統計實踐能力。案例教學與統計實踐活動是培養學生統計實踐能力的有效途徑。因此,在教學過程中,一方面,教師可融合各種與實際問題相關的案例進行分析和講解,加深學生對相關統計理論知識的理解,激發學生的學習興趣,培養學生解決實際問題的能力。另一方面,教師可以組織多種形式的課堂或課堂外的統計實踐活動以培養學生統計實踐。如,指導學生針對他們感興趣的與經濟、社會發展相關的統計實際問題展開統計研究,設計調查問卷,收集數據、整理和分析數據,撰寫研究報告,實現對實際問題的分析和解決等。
4.結束語
總之,在“大數據”環境下我們既要積極面對挑戰,又要緊緊抓住機遇,切實結合“大數據”的特點和“大數據處理技術”發展的需求,既加強對傳統的統計學方法、統計理論的教學,又積極開展 “大數據“環境下的拓展教學,推動統計學的發展,在數據收集、數據分析以及統計制度等方面進行改革和創新。
參考文獻:
[1]李國杰. 大數據研究的科學價值[J]. 中國計算機學會通訊,2012,8(9) .
[2]姜奇平. 2013 全球大數據-大數據的時代變革力量[J]. 互聯網周刊,2013,1.
[3]游士兵,張佩,姚雪梅.大數據對統計學的挑戰和機遇 [J]. 珞珈管理評論標,2013,2(13).