時間:2022-06-02 06:08:30
序論:在您撰寫太陽能發電技術論文時,參考他人的優秀作品可以開闊視野,小編為您整理的7篇范文,希望這些建議能夠激發您的創作熱情,引導您走向新的創作高度。
關鍵詞:太陽能發電綠色照明一體化
太陽能發電是利用電池組件將太陽能直接轉變為電能的裝置。太陽能電池組件(Solarcells)是利用半導體材料的電子學特性實現P-V轉換的固體裝置,在廣大的無電力網地區,該裝置可以方便地實現為用戶照明及生活供電,一些發達國家還可與區域電網并網實現互補。目前從民用的角度,在國外技術研究趨于成熟且初具產業化的是"光伏--建筑(照明)一體化"技術,而國內主要研究生產適用于無電地區家庭照明用的小型太陽能發電系統。
1太陽能發電原理
太陽能發電系統主要包括:太陽能電池組件(陣列)、控制器、蓄電池、逆變器、用戶即照明負載等組成。其中,太陽能電池組件和蓄電池為電源系統,控制器和逆變器為控制保護系統,負載為系統終端。
1.1太陽能電源系統
太陽能電池與蓄電池組成系統的電源單元,因此蓄電池性能直接影響著系統工作特性。
(1)電池單元:
由于技術和材料原因,單一電池的發電量是十分有限的,實用中的太陽能電池是單一電池經串、并聯組成的電池系統,稱為電池組件(陣列)。單一電池是一只硅晶體二極管,根據半導體材料的電子學特性,當太陽光照射到由P型和N型兩種不同導電類型的同質半導體材料構成的P-N結上時,在一定的條件下,太陽能輻射被半導體材料吸收,在導帶和價帶中產生非平衡載流子即電子和空穴。同于P-N結勢壘區存在著較強的內建靜電場,因而能在光照下形成電流密度J,短路電流Isc,開路電壓Uoc。若在內建電場的兩側面引出電極并接上負載,理論上講由P-N結、連接電路和負載形成的回路,就有"光生電流"流過,太陽能電池組件就實現了對負載的功率P輸出。
理論研究表明,太陽能電池組件的峰值功率Pk,由當地的太陽平均輻射強度與末端的用電負荷(需電量)決定。
(2)電能儲存單元:
太陽能電池產生的直流電先進入蓄電池儲存,蓄電池的特性影響著系統的工作效率和特性。蓄電池技術是十分成熟的,但其容量要受到末端需電量,日照時間(發電時間)的影響。因此蓄電池瓦時容量和安時容量由預定的連續無日照時間決定。
1.2控制器
控制器的主要功能是使太陽能發電系統始終處于發電的最大功率點附近,以獲得最高效率。而充電控制通常采用脈沖寬度調制技術即PWM控制方式,使整個系統始終運行于最大功率點Pm附近區域。放電控制主要是指當電池缺電、系統故障,如電池開路或接反時切斷開關。目前日立公司研制出了既能跟蹤調控點Pm,又能跟蹤太陽移動參數的"向日葵"式控制器,將固定電池組件的效率提高了50%左右。
1.3DC-AC逆變器
逆變器按激勵方式,可分為自激式振蕩逆變和他激式振蕩逆變。主要功能是將蓄電池的直流
電逆變成交流電。通過全橋電路,一般采用SPWM處理器經過調制、濾波、升壓等,得到與照
明負載頻率f,額定電壓UN等匹配的正弦交流電供系統終端用戶使用。
2太陽能發電系統的效率
在太陽能發電系統中,系統的總效率ηese由電池組件的PV轉換率、控制器效率、蓄電池效率、逆變器效率及負載的效率等組成。但相對于太陽能電池技術來講,要比控制器、逆變器及照明負載等其它單元的技術及生產水平要成熟得多,而且目前系統的轉換率只有17%左右。因此提高電池組件的轉換率,降低單位功率造價是太陽能發電產業化的重點和難點。太陽能電池問世以來,晶體硅作為主角材料保持著統治地位。目前對硅電池轉換率的研究,主要圍繞著加大吸能面,如雙面電池,減小反射;運用吸雜技術減小半導體材料的復合;電池超薄型化;改進理論,建立新模型;聚光電池等。幾種太陽能電池的轉換效率。
充分利用太陽能是綠色照明的重要內容之一。而真正意義上的綠色照明至少還包括:照明系統的高效率,高穩定性,高效節能的綠色光源等。
3.1發電--建筑照明一體化
目前成功地把太陽能組件和建筑構件加以整合,如太陽能屋面(頂)、墻壁及門窗等,實現了"光伏--建筑照明一體化(BIPV)"。1997年6月,美國宣布了以總統命名的"太陽能百萬屋頂計劃",在2010年以前為100萬座住宅實施太陽能發電系統。日本"新陽光計劃"已在2000年以前將光伏建筑組件裝機成本降到170~210日元/W,太陽能電池年產量達10MW,電池成本降到25~30日元/W。1999年5月14日,德國僅用一年兩個月建成了全球首座零排放太陽能電池組件廠,完全用可再生能源提供電力,生產中不排放CO2。工廠的南墻面為約10m高的PV陣列玻璃幕墻,包括屋頂PV組件,整個工廠建筑裝有575m2的太陽能電池組件,僅此可為該建筑提供三分之一以上的電能,其墻面和屋頂PV組件造型、色彩、建筑風格與建筑物的結合,與周圍的自然環境的整合達到了十分完美的協調。該建筑另有約45kW容量,由以自然狀態的菜子油作燃料的熱電廠提供,經設計燃燒菜子油時產生的CO2與油菜生長所需的CO2基本平衡,是一座真正意義上的零排放工廠。BIPV還注重建筑裝飾藝術方面的研究,在捷克由德國WIP公司和捷克合作,建成了世界第一面彩色PV幕墻。印度西孟加拉邦為一無電島117家村民安裝了12.5kW的BIPV。國內常州天合鋁板幕墻制造有限公司研制成功一種"太陽房",把發電、節能、環保、增值融于一房,成功地把光電技術與建筑技術結合起來,稱為太陽能建筑系統(SPBS),SPBS已于2000年9月20日通過專家論證。近日在上海浦東建成了國內首座太陽能--照明一體化的公廁,所有用電由屋頂太陽能電池提供。這將有力地推動太陽能建筑節能產業化與市場化的進程。
3.2綠色照明光源研究
綠色照明系統優化設計,要求低能耗下獲得高的光效輸出,并延長燈的使用壽命。因此DC-AC逆變器設計,應獲得合理的燈絲預熱時間和激勵燈管的電壓和電流波形。目前處在研究開發中的太陽能照明光源激勵方式有四種典型電路:①自激推挽振蕩電路,通過燈絲串聯啟輝器預熱啟動。該光源系統的主要參數是:輸入電壓DC=12V,輸出光效>495Lm/支,燈管額定效率9W,有效壽命3200h,連續開啟次數>1000次。②自激推挽振蕩(簡單式)電路,該光源系統的主要參數是:輸入電壓DC=12V,燈管功率9W,輸出光效315Lm/支,連續啟動次數>1500次。③自激單管振蕩電路,燈絲串聯繼電器預熱啟動方式。④自激單管振蕩(簡單式)電路等方式的高效節能綠色光源。
關鍵詞:光伏發電技術;教學模式;課堂實驗教學;校企合作教學
中圖分類號:G646 文獻標志碼:A 文章編號:1674-9324(2015)03-0161-02
人類社會的可持續發展面臨著環境惡化、資源短缺的嚴峻挑戰,而取之不盡用之不竭的太陽能則成為新能源的首選之一。曾經在全球光伏產業的推動下,中國光伏產品已占據國際市場的大半壁江山,但卻一直面臨市場在外的困局。光伏產業經過數年爆發式增長,最終多個環節產能面臨嚴重產能過剩。隨著歐美對中國太陽能電池板的“雙反”實施,近幾年是中國光伏產業發展過程中的一個“寒冬”。光伏企業要應對“寒冬”,一是上游制造企業要提高自身的技術水平和產品質量;二是下游應用企業要抓住機遇,通過技術創新不斷提高系統集成能力,致力于為客戶提供優質可靠的系統設計方案。依據國家新能源政策的戰略部署,結合上海電力學院的專業特色,我校相關太陽能光伏發電專業力圖培養出合乎國家和社會需要的、滿足光伏產業結構調整的市場需求的光伏材料及光伏系統設計專業方面的人才。有關專業以物理學為基礎,系統學習基礎物理學、固體物理、半導體物理等,使學生牢固掌握物理學基礎理論。同時結合電力教學的優勢,將太陽能電池技術、太陽能發電技術、電力分析基礎、逆變器原理等作為專業必修課,培養太陽能發電技術行業的高層次專業人才。這樣,學生在掌握光伏發電系統設計專門技能的同時具備更加扎實的理論知識基礎和科技創新的潛力。其中《太陽能發電技術》包含了太陽輻射、光伏系統設計原理、部件選型、系統安裝維護等內容,其教學目標是希望通過該課程的學習能使同學們能掌握太陽能發電系統的設計開發,為今后從事相關工作打下堅實的理論基礎。作為最早開設《太陽能發電技術》課程的高等院校,由于該課程屬于新課程教學,教學過程中受到教材、實驗設備等各方面條件的限制,使用傳統的教學方法效果不很理想。本文就近年教學過程中遇到的一些問題,針對目前的教學模式進行探討。
一、加強課堂實驗教學
《太陽能發電技術》作為光伏產業人才培養的基礎性課程,主要講述太陽輻射的相關知識、光伏發電系統的原理、系統設計、配件選型及系統安裝維護等相關專業知識,這是一門實踐性十分強的專業課程。在目前的教學過程中發現,單純依靠理論知識講解,學生很難對光伏系統有深入的理解??偨Y教學過程發現,在學習理論知識的同時如果能結合相關的實驗、實踐教學,則可大幅度提高教學質量與課堂教學效果,也能加深學生對知識點的理解與掌握,這就凸顯了課程教學中實驗環節的重要性。由于《太陽能發電技術》屬于新課程,受到實驗設備、實驗條件和人員的限制,短時間內開展豐富實驗教學有著一定的困難。但是,使用計算機軟件仿真虛擬實驗和設計就沒有這方面的限制。因此,著手開發該課程的虛擬實驗教學環境也是一種重要的方法。此外,在教學的過程中也可以根據教學的需要,動員學生與老師一起自行設計一些簡單可行的實驗設備,既可以加深學生對所學理論知識的理解,又能使學生能夠得到全面的實際訓練,還可以豐富該課程的教學資料。另外,在這個過程中,除了簡單的驗證性實驗,還與控制類、綜合設計類的實驗相結合,提高了學生對已學知識的綜合運用能力,加強了學生的動手能力和實踐能力,使學生在走入社會后,能較快適應市場發展需要,提高就業競爭力。此前北京信息科技大學的白連平等[1]針對該課程就設計了一些可行性實驗,如光伏陣列設計實驗、太陽能路燈照明系統設計等。
二、開展校企合作教學
由于工科課程的實踐特性,除了課堂的理論與實驗之外,開展校企合作教學則是提高該課程教學效果的制勝法寶[2]。在前期的教學過程中作為實踐教學曾經帶學生到相關的光伏企業見習,在企業參觀實習的結束之后,有些學生反映“公司實習4天比在學校2年學的東西都多”,這句話也讓作為教育工作者的我們陷入沉思。現在學生學習知識的途徑很多,他們更喜歡看到實際的操作而不是“紙上談兵”。例如課堂上講過單晶硅、多晶硅、薄膜太陽電池,而很多學生到了現場仍然分不清楚是什么類型的太陽電池組件;課堂上學習了晶體硅太陽電池的制備工藝,參觀的時候學生還是提出為什么這些電池都是藍色的,不能做成其他顏色呢?雖然這些基礎的知識都已經在課堂上講授過了,明顯部分學生不知道或者不懂卻從來沒有人提出過,而在參觀過程中他們都想到了這些問題,通過參觀學習對這些知識有了更進一步的理解,充分說明了僅有課堂教學遠遠無法滿足該課程的設置目標。因此,除了輔助的課堂實驗教學或者視頻演示之外,與相關企業開展校企合作教學也是提高學生認知能力的一項重要教學手段。這就要求在該課程的教學過程中,除了加強實驗教學還必須加強學校和企業之間的合作,開展合作教育方可取得更好的教學成果。
三、將科研與新技術融入教學培養學生的科技創新能力
素質教育已經是高等院校的重中之重,學校有很多項目都涉及鼓勵大學生科技創新,從近代科學技術的發展史我們也可以看出,年輕人在科技創新上有著巨大的潛力。而如何通過有效途徑提高工科學生的科技創新能力也困擾著不少教師。同時作為高校教師大多也同時肩負著科研工作,怎么樣將自己的科研工作融入日常教學并以此為基礎培養學生的科技創新能力也是一個應該認真考慮的重要問題。大學生在科研領域的創新在國際上屢見不鮮,比如在超導領域,MgB2合金超導體以及NaCoO.H2O超導體都是由日本的本科生首先發現的?!短柲茈姵丶夹g》及《太陽能發電技術》課程的開設,為科研融入教學提供了良好的載體。太陽電池材料的研究是目前材料科學的一大熱門研究領域,這樣可以在教學過程中使學生了解到最新的材料研究,從而讓學生了解到了什么是科研,科研對實際生活又有著怎樣的影響,從而激發學生的學習興趣。而《太陽能發電技術》主要包括太陽輻射、電池制造、組件制造、系統原理、系統設計、部件選型以及控制器逆變器原理等技術。它包含了多門理論性和實踐性都很強的專業課程,涉及的知識面廣、內容概念多,為大學生創新提供了一個良好的平臺。學生在老師的指導下開展太陽能電池及發電技術的研究,查閱資料、進行光伏發電方案的設計,促使學生將所學的電學、材料學、物理學等學科聯系起來。有利于調動學生的學習積極性,激發學生的科技創新興趣,培養學生分析和解決問題的能力[3]。
四、課程考核形式多樣化
基于該課程的實踐性特點和教學目的,可以在傳統卷面理論知識考核的基礎上增加多樣化的考核形式,比如系統設計作品展示、成果匯報等多種方式進行考核,綜合考核專業知識、專業技能等方面。對采取不同方式、對各個不同方面進行考核的結果,通過一定的加權系數評定課程最終成績。
五、小項目形式完成課程設計
在網絡化的今天,課程設計面臨的一大問題就是論文在網絡上復制粘貼完成。而作為實踐性較強的太陽能發電方向的畢業生,我們是否可以改變思路,課程設計不再局限于理論推導而轉向實踐性課程設計。指導老師可以根據地理情況和電網分布情況選擇合適的條件用于學生自主設計光伏發電站,包括太陽能電站地點選擇、可行性分析、電站規模及組成、蓄電池容量、光伏電站年發電量及經濟效益、光伏電站整體布局(組件串并連設計、匯流箱排布、電纜連接、線管地槽整體排布、電纜規格及用量計算、線管規格及用量計算、配電房及看守房布置、支架定點圖等)、系統防雷及監測、電網安全性等部分內容[4]。相信完成這樣的課程設計,可以培養學生查閱文獻和市場調研能力,對其今后獨立從事光伏產業內業務是非常有幫助的。這樣的課程設計比普通的論文撰寫更能提高學生的專業水平,從而使學生的能力達到甚至超越該學科的培養目標。
本文根據《太陽能發電技術》的實際教學經驗以及該課程的教學目標,探討了在現有教學模式基礎上需要進行的一些改進。作為工科應用型創新人才,最重要的是應該具有很強的獨立獲取和應用知識的能力,而傳統的理論教學為主模式則很難讓學生將書本知識與實際光伏工程結合起來,也就無法真正理解光伏發電系統。本文提出了加強實驗教學、開展校企合作教學、將大學生創新融入教學以及改變傳統的考核方式等,其實質都是為了改變目前理論教學為主體的教學模式,將實驗、實踐教學等過去不被重視的教學方式引入這些實踐性較強的課程,探索新的教學模式,從而培養出更適合現代企業、社會所需的高層次人才,達到開設該專業的最終目標。
參考文獻:
[1]白連平,張巧杰.光伏發電實驗設計探討[C].第五屆全國高校電氣工程及其自動化專業教學改革研討會論文集(2):602-605,2008-04,中國陜西西安.
[2]趙濤,李國強.獨立學院校企合作人才培養模式探索與實踐[J].實驗室科學,2012,(6):1.
關鍵詞:新能源發電太陽能,風能,發展前景
0引言
自第三次工業革命以來,人類社會在經濟和科技方面取得了空前的發展,伴隨而來的是常規化石能源的大量消耗及其引起的環境污染和資源短缺等一系列問題,迫使人類不得不開始尋找清潔的可再生能源,也即新能源。相對于傳統的煤、石油、天然氣等化石能源,新能源普遍具有污染少、儲量大的特點,對于解決當今世界日益嚴重的環境污染和資源匱乏等問題具有十分重要的意義[1]。資源與環境的壓力也給電力系統帶來了新的挑戰,利用新能源逐步取代傳統能源進行發電將是今后電力工業發展的趨勢,可見新能源發電具有良好的發展前景和實用價值。
1 新能源發電的類型及其原理特點
新能源發電主要包括太陽能發電、風力發電、生物質能發電、地熱發電、潮汐發電等方面。
1.1太陽能發電
太陽能是指太陽內部連續不斷的核聚變反應過程所產生的能量,它是一個巨大的能源,據估計,我國陸地面積每年接收到的太陽能輻射能相當于億噸煤[2]。太陽能發電又叫光伏發電,它的基本原理是利用光伏效應,通過光照產生電動勢,進而輸出電能,實現光電轉換。簡單地說,太陽能發電就是通過太陽能電池直接將太陽光轉換成電能,太陽能電池是由各種具有不同電子特性的半導體材料薄膜制成的平展晶體,可以產生強大的內部電場[2],主要包括單晶硅電池、多晶硅電池和非晶硅電池三種類型。免費論文參考網。
常見的太陽能發電系統由太陽能電池、控制器和逆變器三部分構成,按其運行方式可分為獨立太陽能發電系統和并網太陽能發電系統,其中后者是目前的主流發展趨勢,即太陽能電池發出的直流電,通過逆變裝置轉換成交流,進而并入電網使用。太陽能發電安全可靠,具有許多優點,如能源充足,太陽能無處不在,不受地域限制;建設周期短,運行成本低;不需要消耗燃料,無環境污染;結構簡單,維護方便,適合無人值守。但是,太陽能發電受氣候條件影響,具有間歇性,且價格昂貴。
1.2 風力發電
風力發電是將風能轉換成機械能,再轉換為電能,其基本原理是利用風吹動風輪,通過風輪的機械轉動驅動發電機轉子旋轉,進而產生電能。風能是清潔的可再生能源,風力發電與常規發電相比,具有能源充足、不消耗燃料、無環境污染、占地面積小、工程建設周期短、發電技術成熟等優點。在當今世界的新能源開發技術中,風力發電是最成熟、最有商業利用價值的發電方式,其裝機容量正在不斷擴大,全球風電發電量占總發電量的比例也在逐步增加。
1.3生物質能發電
生物質能是綠色植物通過光合作用,將太陽能轉化為化學能而儲存在生物質內部的一種能量形式,是一種資源豐富、無污染的能源。生物質能發電包括農林廢棄物燃燒發電、生物質燃氣發電、城市垃圾焚燒發電、沼氣發電等方面。生物質能發電具有電能質量好、可靠性高等優點,具有較高的經濟價值。
1.4 地熱發電
地球內部蘊藏著巨大的熱能,地熱能就是地球內部的熱釋放到地表的能量,地熱發電就是將地熱能轉變為機械能,再將機械能轉變為電能,它是利用地下熱水和蒸汽為動力源的一種新型發電技術,其原理與火力發電基本一樣,即將蒸汽的熱能通過汽輪機轉變為機械能,然后帶動發電機發電[2]。
1.5潮汐發電
潮汐能,顧名思義,就是潮汐所蘊含的能量,同樣是一種取之不盡、用之不竭的新能源。潮汐發電,就是利用海水漲落及其引起的水位差來推動水輪機,由水輪機帶動發電機進行發電,其原理與一般的水力發電差別不大。即在海灣或有潮汐的河口修建大壩,構成水庫,利用壩內外漲潮、落潮時的水位差進行發電。潮汐發電受潮汐周期變化的影響,具有間歇性。
2 中國新能源發電的前景展望
改革開放以來,我國經濟高速發展,經濟規模躍居世界前列,與此同時,能源消費結構的不合理引起的資源環境問題日益突出,大力發展新能源發電技術,是調整能源結構、促進節能減排、實現可持續發展的要求。我國可再生能源資源豐富,通過近年來的發展,新能源發電已經取得了一定進展,已經形成了一定規模、體系相對完善的新能源產業。中國新能源發電雖然剛剛起步,但是卻有著廣闊的發展前景。免費論文參考網。
(1)風力發電和太陽能發電發展迅速。中國風能資源豐富且風力發電技術較為成熟,目前正在以“建設大基地,融入大電網”的方式進行規劃和布局。太陽能發電同樣也具有較好的發展前景,我國的太陽能電池制造水平較高,應該大規模推廣太陽能發電。免費論文參考網。根據國家能源局制定的《新能源產業振興發展規劃》,到2011年,新能源在能源結構中的比重達到2%(含水電為10%),新能源發電占電力總裝機容量的比重達到5%(含水電為25%)。而風電裝機容量將達到3500萬千瓦(陸地風電3000萬千瓦,海上風電500萬千瓦),太陽能發電裝機容量將達到200萬千瓦[1]。除此之外,《2008年中國風電發展報告》預言,到2020年末,全國風電開發建設規模有望達到1億kW。
(2)生物質能發電優勢明顯,前景較好。相對于風力發電和太陽能發電的間歇性特點,生物質能發電具有突出的優點,經濟價值較高。2002年,我國可再生能源發電裝機容量3234.6萬kW,其中生物質能發電裝機容量80萬kW,在眾多新能源和可再生能源發電中僅次于小水電。預計到2020年,可再生能源發電將達0.9~1億kW,其中生物質能發電為1000萬kW;另一種估計結果是2020年可再生能源發電裝機容量將達到1.21億kW,其中生物質能為2000萬kW。
(3)在有條件的區域發展地熱發電和潮汐發電。受地理條件的限制,地熱發電和潮汐發電均具有地域性。目前,中國高溫地熱電站主要集中在西藏地區,總裝機容量為27.18MW,其中羊八井地熱電站裝機容量25.18MW,其發電量已經占到拉薩電網的40%以上,對緩和拉薩地區電力緊缺的情況起到了重要的作用。今后,可繼續在西藏地區大力發展地熱發電。我國潮汐能蘊藏量中可開發利用部分的92%集中在經濟發達、能源需求迫切的華東沿海地區[3],發展潮汐發電可緩解這些地區的電力不足。但是,潮汐發電由于開發成本較高和技術上的原因,目前發展并不是很快,我國江廈潮汐電站裝機容量為3200kW,年發電量1070萬kWh[4],今后可視情況適當發展潮汐發電。
3 結語
能源短缺和環境惡化已經成為威脅人類生存的全球化問題,發展新能源是實現人類可持續發展的必經之路,中國應該加快開發利用新能源的步伐,大力發展新能源發電,逐步實現從常規能源向清潔能源轉變。目前,我國的新能源發電已經取得了一定的進展,但同時還存在著一些亟待解決的問題,主要表現在技術基礎薄弱、相關體制尚不規范等方面。為此,提出一些建議:(1)制定發展目標,科學規劃布局。新能源發電必須進行合理規劃和布局,有必要將其納入國家經濟社會發展總體規劃。(2)加快體系建設,規范行業發展。對于新能源發電的設備要求和并網技術標準,應該盡快制定相關準則。(3)加大投資力度,鼓勵自主創新。目前,我國新能源研究力量分散,缺乏跨學科的交流,有必要對各類科研機構進行整合。除此之外,新能源發電是智能電網的一個重要組成部分,必須構建全國統一的新能源電網,以促進我國智能電網的建設。
參考文獻
[1] 趙新一. 新能源發展展望[J]. 電力技術,2009,10(10):7-14.
[2] 孫元章,李裕能. 走進電世界——電氣工程與自動化(專業)概論[M]. 北京:中國電力出版社.2009.
[3] 刑運民,張文娟. 新能源與可再生能源發電技術的發展[J]. 西華大學學報,2007,1(26):50-52.
[4] 葉峰. 新能源發電——實現人類的可持續發展[J].能源與環境,2008,3:55-57,62.
論文摘要:從技術創新生態系統的定義出發,闡述其特征與功能結構,并由此發展出全球化自然生態系統的概念,闡述其特征結構與實施必要性。并在當前提倡低碳社會的背景下,以太陽能產業為例,對GIES環境下的我國太陽能產業發展進行分析,并提出建議。
1、創新生態系統
創新是指以科學技術為基礎創造出新型的經濟價值和社會價值。為了強化國際競爭力,解決地球規模的問題,就必須將科學知識、技術、手段轉化為經濟和社會層面的價值,其原動力即為創新。在創新的過程中,構思設想于各階段間循環反饋發展進化,將牽涉到大量的經濟要素與社會要素,具有復雜性和不確定性。這種綜合性的復雜系統表現為創新生態系統。
創新生態系統是"面向客戶需求、協作R&D、知識產權許可、技術標準合作、戰略聯盟"為核心的基于構件模塊的知識異化、共存共生、協同進化的創新體系,具有類似自然生態系統的基本特征。
創新生態系統的結構,由起點的研發理論,戰略構想為基礎,通過大學,企業,學術機構等各領域的研究開發,確立創新思維體系的核心部分。而創新思維的實證,則在各式各樣的創新型網絡相互作用的"場"內進行。創新型網絡是圍繞創新思維形成的各種正式與非正式協作關系的總結構,連同各種各樣的經濟要素和社會要素形成了"場"。在網絡化的"場"中,人才,資金,情報等創新要素相互作用,促進創新的進程,同時相應的"場"也隨之變化。即在動態變化的"場"中進行創新過程。
2、全球化創新生態系統的結構
2.1通過創新生態系統解決全球化問題
在全球化進程加速和愈演愈烈的國際競爭背景下,各個國家為了維持自身發展,爭相推進國家創新生態系統(National Innovation Ecosystem,NIES)的結構擴展。為了解決全球性問題,實現可持續發展的目標,各國的創新生態系統推廣到國家所在地域范圍,進一步推廣到全球層面,構筑全球化創新生態系統,成了當務之急。
2.2全球化創新生態系統的框架結構
全球化創新生態系統(Global Innovation EcoSystem,GIES)不局限于各國國內,在世界規模的系統環境下,科學技術、市場、社會、人才、制度、資金等積極地相互作用,積極推進國際性的生態系統結構的形成,實現社會和地球的可持續發展。
GIES主要由三方面的要素構成。
(1)"場"的推動要素,即科學技術、市場和社會。
(2)"場"的構成要素,即人才、制度、資金。
(3)"場"的構成要素的調整,國際協作框架下的公共部門以及企業部門。
三方面的要素相互作用,促成創新過程,通過對已有實例的分析,把握動態要素的活動方向,可以對GIES下的新型創新項目提供支持。
3、全球化創新生態系統環境下中國太陽能產業的發展動向
3.1 GIES環境下中國太陽能產業的不均衡問題
中國太陽能產業近幾年來雖呈現出較快的發展勢頭,但發展速度依然緩慢,太陽能產業與市場間存在著巨大的不均衡,不符合可持續發展前提下的能源計劃與環境產業的步調。總結起來,主要有以下兩個方面:
國內太陽能市場的發展程度遠低于產業自身發展,對中國能源產業產生不利因素的同時,也不利于維持太陽能產業的健康發展。太陽能產業的成長不僅需要一個良好的國際市場環境,更重要的是擁有一個良好的國內市場。國內市場的成長不僅為國內產業提供新的成長空間,還將解決非太陽能用電區域內的電力問題,對改善中國能源結構有著重要的意義。
研究開發能力和自主創新能力的脆弱。近年來,多數企業設置自身的研發中心,并與國內外的大學和科研機關進行緊密的合作,各級政府在太陽能的研究領域投入也明顯加大。中國太陽能領域的科研能力不足,產學研交流不足的情況得到了一定的緩解。但是技術水平和人才培養結構的落后,中國太陽能產業的研發能力依然很薄弱,同時存在自主創新不足的問題。企業技術人才的明顯不足,導致了對國際先進技術的消化,吸收和更新更加困難。在激烈的國際競爭氛圍下,加速人才培養,提高中國自主創新能力是當務之急,也是重要的戰略性任務。
3.2 GIES環境下對中國太陽能產業發展的建議
GIES是NIES基礎上的逐步擴展,當前國際太陽能產業的高速發展帶動了中國太陽能產業,給中國太陽能產業提供了一個良好的國際氛圍。這也要求中國太陽能產業在拓展海外市場的同時,應該優先健全國內市場,積極調整國內市場結構,加強投入力度,加大政策扶持,以內在市場推動海外市場發展,真正成為太陽能產業的大國強國。所以,針對GIES環境下,中國太陽能產業提出以下建議:
強化太陽能發電的戰略研究。集合專家學者對世界與中國的能源形勢進行深入研究,準確捕捉世界太陽能發電的發展趨勢和行進路線。據此規劃中國太陽能發電產業的中長期科學發展計劃,并且該計劃與低碳社會和可持續發展的要求相一致。
強化支援太陽能發電技術,科學技術的進步是太陽能發電成本削減的重要因素之一,加大科技投入,加強中國太陽能技術力,加速太陽能成本的削減。重點支援多晶硅制造的核心技術開發,提高中國太陽能電池多晶硅制造技術水準。
建設國家級的太陽能技術研究機構,提高中國太陽能自主研發能力。設立國家級的太陽能技術研發機關,是提高中國自主研發能力的重要途徑,從技術面和政策面上對太陽能發電技術和產業提供最直接的科學指導。
強化太陽能發電的宣傳普及和教育,提高全民對太陽能發電的認識,同時應在大學等教育機構設立與太陽能相關聯的專門學科,培養優秀人才。
強化太陽能技術的國際交流合作,尤其是在法制層面上,使中國太陽能發電的法律構造和體系健全化,強化中國太陽能發電相關法規以及實施細則的科學性和實用性。在科技,人才,資源和協議加強國際交流合作,不僅可以促進中國太陽能發電技術水平和產業水準的提高,同時也將對中國和世界的能源可持續發展和低碳社會建設做出積極的貢獻。
4、結論
在全球性問題日益突出的今天,全球化創新生態系統尋求聯合性的技術創新,產品交流,政策上的,推動世界市場的發展,解決社會問題。通過對太陽能產業發展動向的分析,根據先進國的動向發現中國太陽能產業尚存在的問題,結合GIES的諸要素基準,不斷完善發展國內市場環境,使中國太陽能產業發展更加均衡,更加切合低碳社會和可持續發展的準則。
參考文獻
【1】竹下壽英:「エネルギー技術開発政策の評価,エネルギー??資源,Vol.20, No.2 131-138 (平11-3)
【2】生駒俊明, イノベーションと國際競爭力, 學術の動向, 2006 年12 月號 (2006).
【3】 David PA, Hall BH, Toole AA. Is public R&D a complement or substitute for private R&D? A review of the econometric evidence (2000).
【4】中國新能源網newenergy.org.cn/2009-2-19.
【5】李建海.太陽能的開發與我國的可持續發展(J).蘭州教育學院學報2003.3:45-48.
關鍵詞:風力發電;光伏發電系統;小干擾穩定
Abstract: the small signal stability analysis for wind power and photovoltaic power generation, have very important significance, because of wind and solar are characterized, instability, therefore, wind turbine in a photovoltaic battery will generally by means of power electronic converter and grid connected to the load, therefore, small disturbance stability presents the new features, this paper mainly research on small disturbance wind power and photovoltaic power system stability.
Keywords: wind power generation; photovoltaic power system small signal stability
[中圖分類號] TM614 [文獻標識碼]A[文章編號]
一、引言
近些年來,對著自然環境的惡化和能源的枯竭,可再生能源日益受到了社會各界的重視,作為可再生能源的重要組成部分,風力和太陽能發電也得到了一定程度的發展,在風力和太陽能發電發展過程中,較為成熟的技術當屬風力發電技術以及太陽能光伏發電技術,但是,隨著近些年來風力發電以及光伏發電容量的增加,這兩種技術帶來的小干擾穩定問題也受到了專家學者的關注,對于風力發電與光伏發電系統小干擾穩定的問題,國外的專家學者已經進行了深入的研究,取得了良好的研究成效,下面就對風力發電系統小干擾穩定及光伏發電系統小干擾穩定分別進行闡述。
二、風力發電與光伏發電簡介
就目前來看,風力發電技術是現階段對于可再生能源發電技術中發展形勢最好的技術之一,風力發電最早發源于丹麥,近些年來,由于環境資源的枯竭問題,風力發電這項新技術漸漸受到了各國的關注,在1995年之后,風力發電在世界范圍內得到了迅速的發展,目前,兆瓦級的風機成為發展的主流,海上風機也得到了一定程度的發展,我國的風力發電最為起源于上世紀50年代,在1995年以后,風力發電也逐漸呈現出了產業化的發展趨勢,但是就現階段來看,我國的風力發電技術還不夠完善,核心的元器件都需要依賴進口,電能的造價也較高,主要依靠國家的補助來維持,因此,在下一階段,必須要發展風力發電的核心技術。
光伏發電是太陽能發電的一種,最早起源于上世紀50年代中期,我國的光伏發電于上世紀80年代以后得到了迅速的發展,近些年來也取得了一定的發展成效,作為光伏電池的生產大國,我國在其運用方面還有一些不足之處,也有著巨大的市場潛力。
三、風力發電小干擾穩定
對于風力發電的小干擾穩定需要從單機系統入手研究,為了研究風力發電的小干擾穩定,需要建立小信號模型,并在模型的基礎上探討風力發電系統的小干擾穩定性,并通過各種參與因子分析控制器參數與狀態變量以及震蕩模型之間的關系,從而揭示出小干擾穩定的原理。目前,在我國研究較多的是異步風力發電系統、直驅式永磁同步風力發電系統以及雙饋風力發電系統,相關的研究數據表明,當風力發電系統的風電機處在額定轉速十,其槳距角可以使風機獲得最大的轉距,在風速超過額定速度時,可以控制其槳距角使風機可以獲得恒定的輸出功率,但是,在實際的工作過程中,風機存在著延時的情況,因此,在控制中除了使用槳距角,還要利用其他的因素,通過建立單機模型對其進行分析,并根據不同參與因子的計算,利用狀態矩陣元素對風力發電小干擾穩定進行研究,可以獲知,同永磁同步發電機轉速相關的模態都屬于衰減狀態,通過對起衰減狀態的研究證實,整個風力發電系統在運行的過程中,遭受干擾后表現的也較為穩定,也有良好的動態性能。
四、光伏發電系統小干擾穩定
一般情況下,光伏發電系統主要由光伏電池,濾波電容,逆變器,線路,變壓器,電網等部分組成,在研究光伏發電系統小干擾穩定的過程中,選擇風速的階躍上升以及風速的階躍下降作為干擾,并建立仿真波形圖以及小信號模型,小信號模型包括電力電子變換器模型,光伏電池模型,控制器模型,電網接口部分模型以及直流部分模型,經過仿真波形圖的計算,并將這些模型進行聯立,可以得出,當風速發生階躍的情況下,整個光伏發電系統的動態穩定性能較好,系統運行也較為穩定。在計算的過程中,對起運行過程中的參與因子進行分析可計算,可以得出當控制器的參數發生變化時,會對狀態產生不同的影響,在這其中,主導特征值對整個系統運行的動態性能有著極為重要的影響,當主導特征值為15.4時,整個系統呈現出衰減的狀態,當主導特征值為14.7時,整個系統呈現出震蕩的狀態,
五、結語
隨著近些年來風力發電以及光伏發電的發展,其小干擾穩定問題也逐漸引起了相關專家學者的關注,小干擾穩定的分析對于風力發電與光伏發電而言,都有著十分重要的意義,由于風能及太陽能都具有不穩定性的特征,因此,風力發電機組于光伏電池組一般會通過電力電子變換的裝置于負荷以及電網相連,因此,小干擾穩定也呈現出了新的特點,對于風力發電機組而言,整個風力發電系統在運行的過程中,遭受干擾后表現的也較為穩定,也有良好的動態性能,對于光伏電池組而言,當風速發生階躍的情況下,整個光伏發電系統的動態穩定性能較好,系統運行也較為穩定,同時,主導特征值對整個系統運行的動態性能有著極為重要的影響。
參考文獻:
[1] 黃漢奇:風力發電與光伏發電系統小干擾穩定研究[博士論文],華中科技大學 ,2012,05(01)
[2] 范偉,趙書強:考慮風力發電的電力系統小干擾穩定性分析[博士論文],華北電力大學學報(自然科學版),2009,03(30)
【關鍵詞】溫室大棚;太陽能光伏技術;節能環保
0.引言
我國的光伏產業目前仍處在初級階段,但近年來太陽能產業發展非常迅猛,特別是太陽能電池產品已成功進入歐洲市場。太陽能光伏技術也越來越多的應用于各個行業,大到工業,農業,國防,通信等領域,小至家居生活,光伏技術無處不在。而農業生產中光伏技術的應用還相對較少,傳統農業溫室大棚的能源方式:一是供暖爐,二是電網電能。這已遠遠不能滿足現代農業生產高效,環保節能的理念,因此將太陽能光伏技術引入溫室大棚控制系統是發展現代農業推動農業科技創新的必由之路。
1.太陽能光伏技術
目前太陽能發電主要有兩種形式:一種是光熱轉換發電,二是光伏發電(Photovoltaic Generation,PV)。太陽能光伏發電是通過太陽能電池的福特效應直接將光能轉化為電能過程。優點是不需燃料,無污染,節能、安全、無噪音、容易獲取。近年來,在太陽能有效利用中太陽能光伏發電式發展最快最具活力的一種。
1.1太陽能光伏系統的應用領域及特點
太陽能是一種環保清潔的能源,我國的太陽能資源非常豐富,多數地區平均日照射量在4kwh/m2以上,地區可達7kwh/m2。我國的光伏技術應用還處于初級階段,太陽能主要應用于太陽能熱水系統、太陽能暖房、太陽能發電,太陽能衛星電池,太陽能路燈等。
太陽能光伏系統的特點:
優點:
(1)普遍性:是指太陽能在地球上隨處都有,沒有地域限制且不用開采運輸。
(2)環保性:是指太陽能無毒,無害,清潔、綠色、環保,對于環境污染日趨嚴重的中國,是一種寶貴的資源。
(3)充裕性:太陽能每年到達地球的輻射量非常的充裕,相當于130億萬噸煤所產生的能量。
(4)長久性:科學家根據目前太陽產生的核能速率估算,太陽能的儲量足夠維持上百十億年,地球的壽命也達幾十億年,對于地球人來講太陽能的時間是長久的,無限期的。
(5)前瞻性:對于愈來愈枯竭的地球能源,太陽能無疑是最具開發潛力的綠色環保能源之一,從能源開發的意義上來講太陽能的開發更具有可持續性和前瞻性。
缺點:
(1)分布零散:太陽能在地球表面每年的輻射量很大,但分布廣,密度小,所以利用率低。
(2)穩定性差:太陽能的強弱容易受天氣因素及晝夜交替的影響,所以穩定性較差。
(3)轉換效率低,應用成本高:受材料和技術水平限制,多數太陽能產品轉換率低,從而增加了其應用的成本,經濟性一直是困擾太陽能普及的重要因素。
1.2太陽能光伏系統性能與組成
每個太陽能基片都是一個光電二極管,光伏發電是利用半導體材料的光伏效應,將太陽能轉化為電能的一種形式。而第一個使用的單晶硅光伏電池(Solar Cell),是美國人在1956年研制成功的,從此就有了光伏發電技術。
太陽能光伏發電系統分為獨立(離網)太陽能光伏發電系統和并網太陽能發電系統。獨立太陽能發電系統是由光伏電池板,控制器和電能存儲部件及逆變器組成的發電與電能變換系統。而并網太陽能發電系統,除了上述組件外還必須有并網逆變器與國家電網并網。
(1)獨立太陽能發電系統的系統如下圖1示:
(2)太陽能并網發電系統如圖2所示:
圖2 并網太陽能發電系統結構框圖
其中光伏電池板第一代產品是由硅片為基礎的光電轉換系統,為了提高太陽能電池光轉換效率,降低光伏電池生產成本,相繼出現了基于薄膜技術的第二代光伏電池產品,這種產品使用很薄的光電材料附著在非硅材料的襯底上,降低了生產成本,適合于批量生產;進而第三代太陽能電池產品也將問世,它是以先進薄膜制造技術為基礎的理論極限光電轉化效率可達93%。主要有量子點、多層多結、染料敏化的太陽能電池、有機聚合物電池、納米電池等。
電能儲存部件主要是指太陽能蓄電池,太陽能蓄電池一般采用鉛酸電池,常用的有DC12V,DC24V,DC48V三種,在微型系統中也可用鎳氫電池、鎳鎘電池或鋰電池。蓄電池的主要作用是在有光照時將光能由太陽能電池板轉換成電能儲存起來,以備使用。
太陽能控制器主要對太陽能基板輸出的電能進行調節和控制,把調整后電能分為兩個途徑輸送,一方面直接送往直流負載或交流負載,另一方面將剩余能量送往蓄電池組儲存,當太陽能基板發出的電能不能滿足負載需要時,太陽能控制器便將蓄電池中儲存的電能量送往負載。
太陽能光伏逆變器是光伏發電系統的核心設備之一,也稱為DC-AC逆變器。在太陽能光伏發電系統中,可將太陽能通過太陽電池轉化為DC12V、DC24V、DC48V的直流電能,通過光伏逆變器中的功率變換及控制系統轉化為符合電網電能質量要求的110V或220V交流電。太陽能逆變器可分為DC-AC和DC-DC兩種,可將太陽電池性能最大限度地發揮,并為系統提供強有力的保護功能。太陽能并網逆變器是光伏發電系統與國家電網并網的核心部件。
2.太陽能光伏系統在溫室大棚控制系統的設計方案
2.1太陽能光伏技術在溫室大棚控制系統中應用設計的背景和可行性
日本、美國、荷蘭、以色列等國外農業設施栽培綜合環境控制技術較先進的幾個國家, 由于其地理位置、自然環境和經濟基礎不同, 其發展的側重點也不同。
目前我國農業正處于從傳統型農業向優質、高效、高產為目的的現代化農業轉化的新階段。要發展具有我國特色的溫室自動控制系統,充分發揮溫室農業的高效性,必須綜合應用各種現代化控制和管理技術,通過各項設施的有效運作給溫室栽培物創造最適宜的環境條件,最大限度的減少外界不利環境和氣候條件對農業生產的影響, 獲得作物最佳生長條件, 從而達到增加作物產量、改善品質、延長生長季節的目的。而面對現代社會能源日益枯竭的現實狀況,開發利用新型能源已成為農業生產可持續發展的基本保障方式之一。
本設計針對中國北方天氣干旱、日照時間充足的特點,將太陽能光伏技術引入農業溫室大棚系統設計中,不僅可以解決系統的部分能源問題,而且可以提高現代農業生產的綠色、高效、節能環保進程。目前我國有些省份已經在一些地方率先使用太陽能并網發電系統,如無錫機場800kW屋頂光伏并網系統工程,鎮江、丹江兩個城市的2個4KW光伏并網系統等。從系統的可行性方面來講,首先,中國是個農業大國,這種新型能源的在現代農業生產中的推廣使用,將會為國家節省大量的資源;其次,中國的光伏技術近年來發展迅猛,光伏技術日趨成熟;第三,光伏技術在農業溫室控制系統的應用,將能有效推動高效環?,F代農業生產。第四,溫室大棚多建在光照充足的區域,屋頂平坦,便于安裝且空間充裕。
2.2光伏技術在溫室大棚控制系統中的設計方案
2.2.1系統總體設計思路
本系統設計是基于PLC控制的農業溫室大棚控制系統,通過PLC對溫室中作物生長的環境因子光照、濕度、溫度、CO2濃度等進行調節和影響,從而達到不同農作物生長所要求的環境條件。系統的輸入控制因素主要是傳感器所測試的光照、濕度、溫度及CO2濃度,通過系統運算驅動執行機構動作(噴淋系統、遮陽網、補溫系統控制、CO2補氣控制、補光燈控制及通風系統控制等)來達到控制的目的。溫室系統控制結構如圖3所示:
2.2.2 溫室能源系統創新設計
傳統的溫室設計系統,所有的電能均由系統電網供給。本設計將傳統單一的電網能源供給,變為太能陽能光伏并網發電的形式,當陽光充足時,系統的電能有光伏發電系統供給,當夜晚、陰天光照不充足時,電網中的電能通過并網逆變器和控制器自動補給系統。系統設計擬用太陽能電池板、太陽能控制器和并網逆變器組成并網太陽能發電系統。并網逆變器同時兼有控制器和系統保護的功能。因為并網太陽能發電系統中蓄電池幾乎不用,所以系統沒有選用蓄電池。設計思路結構圖如圖4所示:
圖4 溫室光伏發電系統與控制系統結構圖
光照充足時光伏發電系統產生的電能充足,逆變器自動給溫室控制系統PLC及上位機、溫室系統的傳感系統(溫度傳感器、濕度傳感器、CO2濃度傳感器、光照度傳感器等)、溫室系統執行機構(遮陽簾、天窗、風扇、補光系統等)提供電能,因為系統是按照所有執行機構同時工作時的最大功率設計的,在同一時刻不是所有機構都同時工作,此時多余的電能由并網逆變器送給輸電網;當光照不充足時,并網逆變器自動轉換,系統將從電網中使用電能,此時轉為電網供電狀態。
3.結論
經過對北京農業科技學院的農業科技園和西北農林科技大學新天地設施農業開發有新公司的農業科技園的參觀考察,獲悉這些大棚系統設計均采用現代化先進的控制技術,設計理念新,工藝成熟,能源多采用輸電網供給模式,設計中均未將光伏技術引入農業大棚生產中,其中最大的原因是成本太高。近年來,我國太陽能電池生產日趨成熟,二代、三代產品的相繼問世,是太陽能電池的生產成本大大降低,但控制器和逆變器的生產技術尚不成熟,要實現高效的轉換率,控制器和逆變器仍主要依靠進口。經過對國內外溫室控制系統研究分析,結合現代農業高效清潔的理念,本設計有利于推動我國農業生產對清潔、環保能源的開發和利用,符合綠色、高效農業的先進生產理念。光伏太陽能技術以其永久性、清潔性和普遍性,必將成為我國現代農業生產的必由之路。
【參考文獻】
[1]張立文,張聚偉.太陽能發電技術及其應用[J].應用能源技術,2010.3.
[2]李蔚.太陽能發電技術,太陽能發電技術的應用及發展前景[J].論文薈萃,2011.4.
摘要:本文概述了目前全球能源現狀,表明了太陽能發電的重要性和前景,詳細介紹了各種太陽能發電方式和它們的優點,并對這幾種發電方式作了參數對比。同時指出太陽能發電面臨的困難和解決措施,以及我國太陽能發電的有利條件和難點,對未來我國太陽能發電進行了展望。
關鍵詞:太陽能發電方式規?;?/p>
人類社會已進入21世紀,在新千年開始之際,熱門正面臨著一系列重大的挑戰,全球經濟發展,人口迅速增加,需要提供更多的食物、住房和原料,因而對能源的需求量也不斷增加。在過去20年中,全世界能源消耗量增加了40%,其中85%以上使用的是礦物燃料。這些礦物燃料燃燒時要產生大量溫室氣體,全球單是CO2排放量每年就超過500億噸,而且還在不斷擴大。形成的酸雨造成土壤退化,危害動植物。全球氣候變暖可能會產生災難性后果,必須采取堅決措施,減少溫室氣體的排放。因此,治理環境污染,已成為當務之急。同時,礦物燃料的儲藏量是有限的,按目前探明的儲藏與開發速度的比例計算,地球上可再開采的能源,石油為40年,天然氣約為60年,煤炭為200年。如不采取有效措施,到本世紀中葉,人類必將面臨礦物燃料枯竭的嚴重局面。
為了減少大氣污染、保護人類生態環境、保證能源的長期穩定供應,必須實施可持續發展戰略,逐步改變現有的能源結構,大力開發利用新能源。這已成為各國的共識。
在新能源中,公認技術含量最高、最有發展前途的是太陽能發電。下面就這兩大類太陽能發電方式逐一介紹。
1.太陽能發電的類型及其優點
太陽能發電可分為太陽能熱發電和太陽能光發電兩大類。
1.1太陽能熱發電
聚光式系統的集熱部分由聚光器、跟蹤定位器、吸收器構成,不同的技術常在此部分有所區別;傳輸部分由管道和介質構成,介質常是空氣或水;儲熱部分用來保證發電的連續性,介質多為熔鹽。聚光式系統可分為塔式太陽能熱發電系統、槽式太陽能熱發電系統以及碟式太陽能熱發電系統。
1.1.1塔式太陽能熱發電系統
塔式太陽能熱發電系統也稱為集中式太陽能熱發電系統。它利用定日鏡將太陽光聚焦在中心吸熱塔的吸熱器上,在那里將聚焦的輻射能轉變成熱能,然后將熱能傳遞給熱力循環的工質,再驅動熱機做功發電。
1.1.2槽式太陽能熱發電系統
槽式太陽能熱發電系統是利用槽式拋物面反射鏡聚光的太陽能熱發電系統的簡稱。該聚光鏡面從幾何上看是將拋物線平移而形成的槽式拋物面,它將太陽光聚在一條線上,在這條焦線上安裝有管狀集熱器,以吸收聚焦后的太陽輻射能,并常常將眾多的槽式拋物面串并聯成聚光集熱器陣列。該系統中機熱油回路和動力蒸汽回路分離開來,經過一系列換熱器來交換熱量。當太陽能供應不足時,利用一個輔助加熱器將油回路中的導熱油加熱,從而實現系統的穩定連續運行。
1.1.3碟式太陽能熱發電系統
碟式太陽能熱發電系統借助雙軸跟蹤,利用旋轉拋物面反射鏡,將入射的太陽輻射進行點聚集,聚光點的溫度一般為500—1000℃,吸熱器洗手這部分輻射能并將其轉換成熱能,加熱工質以驅動熱機(如燃氣輪機、斯特林發動機或其他類型透平等),從而將熱能轉換成電能。該方式的優點是:轉化效率最高;可模塊化;可以混合發電。
除了上述幾種聚光式太陽能熱發電方式以外,太陽池發電、太陽能塔熱氣流發電等新領域的研究也有進展。
1.2太陽能光發電
太陽能光發電是指無需通過熱過程直接將光能轉變為電能的發電方式。它包括光伏發電、光化學發電、光感應發電和光生物發電。光伏發電是利用太陽能級半導體電子器件有效地吸收太陽光輻射能,并使之轉變成電能的直接發電方式,是的那股勁太陽光發電的主流。目前世界上應用最廣泛的太陽電池是單晶體硅太陽電池、多晶硅太陽能電池、薄膜太陽能電池等。
1.2.1單晶硅電池
單晶硅電池是建立在高質量單晶硅材料和相關的加工處理工藝基礎上的。它的轉換效率最高,技術也最為成熟。在實驗室里最高的轉換效率為23%,而規模生產的單晶硅太陽能電池,其效率為15%。硅電池進展的重要原因之一是表面鈍化技術的提高。此外,倒金字塔技術、雙層減反射膜技術以及陷光理論的完善也是高晶硅電池發展的主要原因。
1.2.2多晶硅電池
多晶硅電池與單晶硅比較,由于所使用的硅遠比單晶硅少,其成本遠低于單晶硅電池,具有獨特的優勢。但是由于它存在著晶粒界面和晶格錯位的明顯缺陷,造成多晶硅電池光電轉換率一直無法突破20%的關口,低于單晶硅電池。薄膜太陽能電池
薄膜太陽能電池發電是另一種光伏發電方式。由于受到原材料、加工工藝和制造過程的制約,若要再大幅度地降低單晶硅太陽電池成本是非常困難的。作為單晶硅電池的替代產品,現在發展了薄膜太陽電池。目前薄膜電池主要有硅基薄膜太陽電池、化合物半導體薄膜電池、燃料敏化TiO2太陽電池等。
太陽能光伏發電系統的主要優點是:可以有效利用建筑物屋頂和幕墻,無需占用土地資源;可原地發電,原地使用,減少電力輸送的線路損耗;各種彩色光伏組件可取代和節約外飾材料(如玻璃幕墻等)在白天用電高峰期供電,從而舒緩高峰電力需求;配備蓄電池后,還能滿足安全用電設施的不斷電要求;太陽能發電板陣列直接吸收太陽能,降低墻面及屋頂的溫升,減輕建筑空調負荷。
2.太陽能發電面臨的困難和解決措施
前面介紹了幾種太陽能熱發電技術,除碟式發電系統外,都屬于大規模發電系統,只有做成幾十到幾百兆瓦級的發電站,成本才可能降下來。太陽能塔熱氣流發電和太陽池發電占地面積大,利用效率不高,僅僅在1%左右。因此太陽能塔熱氣流發電應放在土地廣闊、人口稀少的沙漠地區使用;而太陽池發電應適合放在日照條件好、鹽資源比較豐富的地區使用??傮w來看,槽式發電系統技術上最為成熟,且其跟蹤機構比較簡單易于實現,總體成本最低。太陽能熱發電系統要實現的是低成本的投資和技術上的高可靠性運行。這要求未來在技術上要進行新型集熱材料的研究和開發,快速提高跟蹤機構的技術并降低其實現成本。同時發電產業要努力實現規?;?建立大規模的并網系統,既節約成本,又保證系統平穩安全運行。
對于光伏發電來說,總體來看,該產業尚處于起步階段,主要是由于太陽能發電初期投資大,控制成本高,而太陽能轉化效率比較低,且容易受天氣等多種因素影響。根據目前光伏發電發展狀況和其技術難點,未來的光伏發電研究需要重視以下幾個方面:一是加快太陽能原材料晶體硅生產技術的研究和新型替代材料的開發,降低材料成本并提高其轉化效率;二是提高系統控制技術,如達到光伏電池陣列的最優化排列組合、實現太陽光最大功率跟蹤等;三是研究光伏發電的并網技術,減少光伏電能對電網的沖擊;四是研究光伏發電與其他可再生能源發電技術的結合應用,保證供電持續性。
3.我國太陽能發電的優勢和難點
發展太陽能發電的需求主要來自滿足農村和邊遠地區的生產與生活用電和21世紀中持續發展我國電力事業兩個方面。在太陽能發電上我國具有得天獨厚的有利條件:
(1)豐富的太陽能資源。我國總面積2/3以上的地區年平均日照時數在2000h以上,年平均日輻射量在4000MJ/m2以上,要優于歐洲和日本,與美國相近。如此豐富的太陽能資源可以節省太陽能電池的用量,有利于太陽能發電在較低成本下加以推廣。
(2)我國太陽能電池的生產能力超過日本、美國和歐洲,居世界第一位,2007年我國太陽能電池的產量約為1180兆瓦。2007年在全球太陽能生產企業16強中,我國占據了6席。(3)逆變技術是太陽能發電的關鍵技術之一,由于在大功率開關器件開發和逆變技術的應用等方面,我國已取得長足進步,生產出適用于光伏并網、高效率、高可靠性、低污染、低成本的逆變器成為可能。
但為了太陽能發電產業的快速發展,必須解決以下幾個問題:
(1)我國生產太陽能電池的原材料主要依靠進口,而絕大多數太陽能電池和切片用于出口,這種不利于產業發展的加工業局面必須盡快扭轉。
(2)太陽能發電的成本在每千瓦小時3元以上,遠遠高于目前居民電網用店家的每千瓦小時0.5元。這也是發展太陽能發電的不利一面。
(3)目前,太陽能電池的光電轉換效率比較低,比如小尺寸(1cm2)多晶硅太陽能電池的光電轉換效率為19.8%,而大尺寸(1000cm2)多晶硅太陽能電池的光電轉換效率為12%,為了降低太陽能發電的成本必須提高太陽能電池的光電轉換效率。
(4)我國的太陽能發電產業起步于獨立型太陽能發電設備(10kW以下),主要用于解決太陽能資源豐富而又無電的邊遠地區的居民用電。而更大容量(MW級)的并網型太陽能發電設備的投產是降低成本的途徑之一。
(5)截止到2005年,我國的風力發電總裝機容量為1500MW左右,是太陽能發電總裝機容量的20倍,到2020年規劃總裝機容量為30000MW,也是規劃太陽能發電總裝機容量的15倍。但兩者特點各異。夏季日照足風速低,冬季日照弱風速強;同樣白天日照強時風小,夜晚無光照時風大。太陽能發電與風力發電并網是提高電能質量和降低成本的另一途徑。