時間:2023-03-29 09:24:40
序論:在您撰寫檢測系統設計論文時,參考他人的優秀作品可以開闊視野,小編為您整理的7篇范文,希望這些建議能夠激發您的創作熱情,引導您走向新的創作高度。
針對垛儲機采棉溫濕度采集點多,數據傳輸距離遠的特點,提出了以電子技術和微控制技術為核心技術的機采棉溫濕度自動檢測系統方案。該系統由溫度傳感器、濕度傳感器、變送器、主從單片機、RS485總線、顯示及鍵盤等部分組成。圖1為垛儲機采棉溫濕度檢測系統框圖。工作時,安裝在探頭上傳感器采集該處機采棉的溫濕度值,通過變送器和轉換器將該處的各點溫濕度數據信號送至該處的從機;從機將采集來的信號進行歸一化處理,取加權平均值,再將加權平均值通過RS485總線送至主機,通過鍵盤輸入機采棉霉變預警的溫濕度閾值;主機將傳輸來的數據和預警閾值相比較,判斷是否達到預警條件,如果達到預警條件,發出命令,控制預警裝置發出警報,并且顯示出霉變或有霉變趨勢的機采棉位置。
2系統設計
2.1硬件部分
本設計的主機所要實現匯總從機發來的信息和預先設定的霉變閾值相比較,判斷每個從機位置的機采棉情況。如果出現異常,主機控制警報系統工作,顯示屏可以利用鍵盤控制其翻頁功能,實時顯示出每個從機位置的機采棉情況。從機主要負責將采集來的溫濕度信息,經處理后,送入主機。鑒于以上因素,主、從機都選用單片機STC89C516RD+。該款單片機具有加密性強、低功耗、速度快和精度高等特點,其核內有64kB的flash,1280B的RAM,16kB的ROM,可以滿足控制的需要。每個從機位置的溫濕度信息檢測,采用探頭檢測,在每個探頭的不同位置,均勻分布4個溫度傳感器和4個濕度傳感器,分別構成該從機的溫度傳感器組和濕度傳感器組。濕度傳感器選用HM1500,模擬量輸出,在5V供電條件下,輸出0~4V范圍的電壓對應相對濕度值0~100%;因為是線性輸出,所以可以直接和單片機相連,為了檢測信號的穩定性,可以將濕度傳感器的輸出量經過同相跟隨器將信號穩定后送入單片機。溫度傳感器選用AD590為模擬信號輸出需要驅動電路驅動后才能使溫度信號經A/D轉換送入單片機;可測量范圍-55~150℃,供電范圍寬,4~30V;圖2為溫度傳感器AD590的驅動電路圖。顯示模塊要求實時顯示各個從機控制的檢測探頭位置的溫濕度以及每個探頭所在位置的坐標值,通過鍵盤的上下鍵控制顯示屏的翻頁和刷新。所以,采用液晶顯示器LCD1602兩行顯示,就可以達到系統設計要求。鍵盤模塊是向主機輸入預設的參考值以及控制顯示屏的翻頁與刷新,基于以上功能采用4×4的行列式鍵盤。
2.2軟件部分
首先,根據設計目標,細化軟件每一部分的功能,統籌設計各部分功能之間的邏輯關系。垛儲機采棉溫濕度檢測系統的軟件設計采用keiluvision2編程環境,編程實現主從機的功能。keilC51是一個比較主流的單片機研發設計的開發工具,主從機的程序編寫采用模塊化編程。其調試程序、完成各部分編程后,將程序的.hex工程文件燒錄至Proteus軟件下的仿真電路圖,仿真效果達到最佳時,記錄電路設計的優化參數;根據此優化參數,設計垛儲機采棉溫濕度自動檢測系統的實物硬件。垛儲機采棉溫濕度自動檢測系統的主機程序流程圖,如圖3所示。
3試驗結果分析
系統的軟硬件調試完成后,在南口農場進行測試試驗。系統測試了垛儲機采棉的溫濕度值。表1為垛儲機采棉溫濕度檢測系統測試的溫濕度數據。從表1中可以看出,本文設計的檢測系統檢測出的機采棉溫濕度值和人工測量的實際值近似相符。試驗結果表明:該系統能夠精確、實時地檢測垛儲機采棉的溫濕度,達到了垛儲機采棉儲存情況的安全控制。
4結論
考慮到僅是文本的儲存,且該軟件為小型單機軟件,占用空間較小,所以我們選擇了MicrosoftOfficeAc-cess數據庫。此舉不僅節約了空間,降低了開發成本,也提高了軟件的性能?;贛icrosoftOfficeAccess數據庫,圖2系統框架圖通過開發環境實現了電磁兼容檢測信息管理系統,同時采用MicrosoftOfficeWord文字編輯軟件作為電磁兼容檢測報告的基礎軟件,采用MicrosoftOfficeExcel電子表格作為部分數據的導入、導出文件格式。這四個軟件都源自同一公司,因此四者之間的交互相對來說會比較簡易快捷。
1.1檢測信息的輸入
電磁兼容檢測需要輸入的主要信息包括:(1)被測件的名稱、型號、編號、生產廠家;(2)被測件供電情況,被測件的供電類型及供電電壓大小,包括直流還是交流,若是交流,則輸入供電頻率;(3)被測件電纜情況,被測件的電纜的類型,包括電源線、信號線等;(4)委托單位名稱和地址;(5)檢測依據的技術文件的名稱、編號,包括被測件電磁兼容檢測所依據的試驗大綱;(6)被測件描述,被測件工作狀態、被測件敏感判據;(7)檢測說明,被測件在檢測過程中需要說明的內容,例如一些同標準測試不同的地方,或被測件整改后的情況等;(8)報告編號、密級;(9)檢測項目及檢測結論,每個檢測項目符合要求與否的結論;(10)檢測費用及結算情況等。根據所輸入的信息,并進行數據校驗,校驗正確后存入數據庫。
1.2軟件配置
為了提高軟件的使用效率,通過配置ComboBox控件的下拉列表,可大大提高軟件信息輸入的效率,例如委托單位的名稱,一般一個委托單位會多次對個產品到電磁兼容實驗室進行電磁兼容檢測,那么,提前配置好委托單位名稱的下拉列表,實際使用時,只需要通過點選即可,提高了數據錄入的速度和準確性,大大節省輸入的時間,提高輸入效率。
1.3報告自動生成
通常一個產品的電磁兼容實驗涉及到多個電磁兼容項目,而每個電磁兼容項目都需要原始記錄和檢測報告。而不少信息是需要重復輸入的,例如原始記錄的表頭信息,完全可以通過編程的方法來自動生成。事先分別建立每個電磁兼容項目的報告模板,把這些報告模板放在一個文件夾下以方便軟件調用。在自動生成某產品電磁兼容檢測報告時,根據產品所檢測的電磁兼容項目在報告模板文件夾中選擇相應的模板,并根據已經輸入的信息,根據報告模板中的書簽和表格等樣式定位位置,自動生成電磁兼容檢測報告。這樣可以避免由于人工書寫檢測報告時由于個人因素編制不慎出現的錯誤,也提高了報告編制的工作效率。通過電磁兼容檢測報告自動生成功能,可以避免由于人員水平參差不齊導致的檢測報告不規范,從而滿足檢測報告的質量要求。
1.4檢測儀器設備管理
電磁兼容檢測儀器設備的基本信息包括名稱、型號規格、編號、測量范圍、準確度、計量的有效期、安放位置、保管人、設備狀態等。在出具電磁兼容檢測報告時,可方便地調用,選擇某儀器設備后可自動顯示該儀器設備的詳細信息,同時根據被測件的具體檢測日期同該儀器設備的計量有效期進行比較,可方便快捷的提示哪些儀器設備的計量有效期需要更新,以免在最終的電磁兼容檢測報告中出現計量有效期過期的低級錯誤。同時,根據儀器設備的校準周期,計算下次校準日期,制定送檢計劃,實驗室人員定時檢查儀器設備情況,填寫校準記錄。
1.5查詢與統計
提供電磁兼容檢測的基本查詢和統計功能??筛鶕蛻暨M行查詢統計,研究系統中委托單位、被測件信息和檢測項目的關系,分析不同的客戶群體,方便采取不同的市場開發策略、不同折扣等級,提供更個性化服務;可根據原始的測試費用來統計電磁兼容實驗室的產值情況;可根據實際收到的測試費用統計電磁兼容實驗室的實際創收情況;統計檢測費用的結算情況,可根據此做好年底時的催款、請款工作;根據檢測人員所檢測的被測件,統計不同檢測人員的工作量,方便實驗室的管理和考核。
2結束語
防潮是糧食儲存過程中一項重要內容,對糧食的儲存質量有很重要的作用。它直接影響到儲備物資的使用壽命和工作可靠性。為保證日常工作的順利進行,首要問題是加強倉庫內溫度與濕度的監測工作。但傳統的方法是用扦樣式玻璃溫度計,人工判讀等最原始的測溫方法,工作量大,難以控制,滯后嚴重,做好日常的糧情檢查工作,可以發現問題,及時處理,以保證儲糧的安全。本論文側重介紹“單片機溫度檢測系統”的軟、硬件設計及相關內容。論文的主要內容包括:采樣、LED顯示,單片機89C51的開發以及系統應用軟件開發等。作為控制系統中的一個典型實驗設計,單片機溫度檢測系統綜合運用了單片機技術、模擬電子技術、通信技術、數碼顯示技術等諸多方面的知識。
2糧倉濕度檢測系統硬件設計
糧情測控系統是計算機硬件與軟件的結合體,實現了計算機對儲糧的檢測與預警。系統硬件由控制部分和信號檢測部分組成,其中,控制部分包含五個模塊:控制器模塊、手動按鍵、顯示模塊、通信模塊和報警模塊;信號檢測部分包含一個模塊:濕度檢測模塊。
2.1核心單元電路
綜合考慮系統的方便性,可靠性,性價比等因素,系統主機芯片采用AT89C51。AT89C51是控制系統常用的單片機,應用在很多領域,利用它完成的報警系統很多。使用AT89C51單片機構成的計算機系統能夠實現準確的采樣煤氣濃度,能夠達到題目的設計要求,而且AT89C51單片機相對于其它型號的單片機,更加易于學習和掌握,性能也相對比較好。
2.2檢測傳感器和檢測電路
濕度檢測采用的是濕度傳感器HS1101。在糧情測控系統中主要是檢測室內與室外的濕度,一般一個糧倉有兩個濕度檢測點,且精度要求不高。
2.3顯示電路設計
系統顯示模塊采用數碼管動態顯示原理,清晰的顯示實時濕度值
3軟件設計
整個系統軟件設計分為兩個部分,作為主控的上位機的軟件設計及作為數據采樣的單片機終端節點的軟件設計。系統采用模塊化編程,將各部分功能分別實現,主要的功能子程序有:數據采集、標度變換、線性校正、數制轉換、數值顯示、發送、接收和部分中斷子程序。
4系統調試
本次設計采用的是模塊化電路和模塊化程序,因此在聯調時只需要把各模塊進行正確的連接就可以實現仿真,其模塊與電路圖在前面已經介紹這里只是給出總體調試的效果,把軟件調試的.HEX文件燒入其中的AT89C51中就可以運行了。
5結語
1.1系統體系結構
該系統主要由多個手持設備終端和監控中心端組成。每個手持設備終端都由R2868紫外線型火焰傳感器和ZigBee節點構成,實時檢測火場中殘余火種的情況,并通過無線傳輸網絡發送給監控中心。監控中心由ZigBee的FFD設備、監視器和SQL數據庫組成,主要功能是完成數據的接收、處理、分析、顯示、存儲等功能。
1.2系統拓撲結構
ZigBee的網絡拓撲結構有星型網絡、簇—樹型網絡和Mesh網狀網絡,在結構、建網、控制方面特性各有優劣。針對火場復雜的環境,考慮到系統配置、系統穩定性等問題,本文采用Mesh網狀網絡拓撲結構。該拓撲結構的優勢在于:結構簡單、建網容易、網絡控制機制相對簡單。節點間路徑相對星型結構要多,但比簇—樹型結構要簡單。數據的碰掩和阻塞情況相對減少。局部的故障不會影響整個網絡的正常工作,因此,網絡工作的可靠性高。
2手持設備硬件結構設計
手持設備終端主要由微處理器CC2530、火焰傳感器R2868、溫濕度傳感器、撥碼開關、聲光報警、液晶屏顯示和電源管理模塊組成。
2.1傳感器驅動電路設計
采用一個1∶70的變壓器,將5V電壓轉換成350V電壓。由于紫外線傳感器的工作原理是基于金屬的光電發射效應和電子繁流理論,傳感器一旦開始放電,就會處于一種自保持放電方式,這樣就不能正確地檢測紫外線。由于傳感器本身沒有自動抑制火花的特性,所以,必須從外部加入滅弧電路。采用周期性地減小陽極電壓,使其低于放電維持電壓的方法可以防止放電電流的自保持。
2.2信號處理電路設計
CC2530芯片使用的8051CPU內核是一個單周期的8051兼容內核,同時該芯片可以配置輸入脈沖捕捉模式。信號處理電路根據不同情況下傳感器輸出脈沖的特點,利用CC2530的輸入脈沖捕捉功能,將傳感器的輸出脈沖捕捉回來,輸入到CC2530的相應引腳內。利用CC2530內部的計數器計算接收回來的脈沖數。同時結合CC2530內部的的定時器,設定一個單位時間。單位時間內,如果計數大于設置的閾值,CC2530的相關管腳則輸出高電平;否則,相關管腳一直處于低電平。
3系統的軟件設計
系統的軟件設計包括手持終端軟件設計和監控中心管理軟件設計兩部分。本設計主要對手持終端軟件進行設計,對監控中心管理軟件進行部分設計。
3.1手持終端軟件設計
手持終端的主要職責是檢測火場是否有殘余火種的存在。手持終端開機后先進行系統初始化,完成系統正常工作時需要的基本配置。接下來手持終端會自動檢查自身撥碼開關的情況,根據撥碼開關不同的組合,設置相應的靈敏度。然后手持終端會主動地與監控中心的設備相連,并將自己的ID號發送給監控中心。利用微處理器輸入脈沖捕捉中斷,實時捕捉R2868火焰傳感器單位時間內輸入的脈沖個數。判斷有無殘余火種存在。為了使檢測情況精確無誤,避免誤判情況的出現,軟件設計采用比較限制法解決這一問題。如果第一次檢測到輸入的脈沖數大于設定的閾值,系統不是立刻報警。因為這次可能是系統采集的干擾值。系統接著進行第二次檢測,如果第二次輸入的脈沖數仍然大于閾值,則判定為有殘余火種存在;如果小于閾值,則證明上一次是由背景噪聲引起的誤判。
3.2監控中心管理軟件設計
ZigBee監控結點主要負責信息的接收,將TTL電平轉換成RS—232電平,通過串口將信息傳送給主機。監控軟件采用VB作為開發工具編寫,安裝在監控中心的主機上,負責對火場傳回信息的處理、分析、顯示、存儲和統計等功能。數據庫開發軟件采用方便集成和移植的SQL數據庫,在實時顯示動態數據的同時,將數據錄入到數據庫中。這些數據可以在火災過后進行分析歸納,指導消防人員高效地進行殘余火災的檢測。
4測試結果與分析
在有火焰的時候,R2868傳感器輸出的脈沖波形通過分析該波形圖可以看出:輸出脈沖的頻率f<2Hz,即有少量紫外線射入。通過分析此脈沖信號,確定R2868可以正常的工作。設置三個檢測點,檢測點的ID號分別為000,001,002,將它們分別放置在以下情況下,測試設備在不同環境下聲光報警是否有效。紫外線是電磁波譜中波長從100~400nm輻射的總稱,太陽光透過大氣層時波長短于290nm的紫外線被大氣層中的臭氧吸收掉,該紫外線傳感器就是利用太陽光譜盲區(日盲區),只對185~260nm狹窄范圍內的紫外線進行響應。將手持設備置于太陽光下,手持設備聲光報警均不工作,證明紫外線傳感器確實不受太陽光的影響。用手持設備檢測分別在太陽光環境下、黑暗環境下、煙霧環境下的火焰,均會引起設備的聲光報警功能。只有在火焰的存在的條件下,手持設備才能進行聲光報警,手持設備受外界環境的影響非常小。利用上述三個檢測點對設備的檢測范圍和可以檢測的火焰大小進行了測試。在相同環境下,分別改變火焰長度和測試距離。經過多次實驗可以看出:檢測距離與火焰長度的大小呈正比,火焰長度越長,檢測范圍越大。設備可以在5m的范圍內,準確地檢測到大于1cm的火焰。針對系統的穩定性進行測試,在實驗中關掉傳播途徑中的一部分路由器,模擬火場中路由器發生故障時的狀態,手持終端設備可以通過其他路由器傳播數據。通過多次改變手持設備發送的數據與接收端數據的情況對比發現,只要有可用的傳播途徑,手持設備就可以將數據發送給監控中心。
5結論
檢測系統由數據采集端、嵌入式網關遠程發送端以及檢測管理中心三部分組成。首先,傳感器通過ZigBee協議發送所采集的植物生理參數信息到網關中的協調器節點,協調器將數據通過RS—232串口發送到基于ARM9的CDMADTU嵌入式模塊,CDMADTU模塊對數據進行處理后通過CDMA2000網絡和Internet網絡將數據發送到由PC構建的Web服務器,發送到服務器的優點是數據易存儲易查詢。最后,檢測中心還能通過基于LabVIEW編寫的上位機軟件根據已知的數據分析出植物的生理生長狀況,并設計了一種根據蒸騰速率和葉綠素含量等參數的自動報警界面,從而可以更精確地判斷和控制植物的長勢和各項經濟指標。
2系統硬件設計
2.1數據采集節點硬件設計
數據采集節點組要負責采集植物的各項生理參數(莖稈與果實直徑、葉綠素含量、植物莖流等)和無線發送采集到的數據。無線收發芯片選用TI公司推出的CC2530作為ZigBee網絡的射頻收發送模塊。CC2530是應用于ZigBee網絡的真正片上系統(SOC)解決方案,包括一個高性能的2.4GHz射頻收發器,內含一個高性能、低功耗的增強型8051內核和一個8通道12位A/D轉換器。CC2530較以往常用的CC2430芯片具有靈敏度更高、功耗更小、通信距離更遠等優點,因此,滿足無線傳感器及其網絡對高性能、低成本、低功耗的要求。本設計中需要測量的莖稈直徑采用基于LVDT的植物莖稈傳感器,葉綠素含量測量采用基于透射型活體葉綠素傳感器,植物莖流測量采用基于熱平衡法傳感器,這些傳感器的輸出均為模擬信號,在傳感器部分對輸出信號進行調理就能夠直接與CC2530芯片連接。
2.2嵌入式網關硬件設計
嵌入式網關主要負責對接收的數據進行處理與存儲,并實現ZigBee協議與TCP/IP協議之間的轉換,從而將數據發送到遠程檢測系統。嵌入式網關主要由協調器和基于AM9的CDMADTU模塊組成,CDMADTU模塊包括AM9微處理器和DTU發送模塊。本設計的CDMADTU選用CDMA2000通信模塊,該模塊采用AM9高性能工業級嵌入式處理器,供電范圍寬(5~32VDC),數據傳輸速度高,系統穩定可靠。在使用CDMADTU之前需要做兩步準備:一是因為本設計采用動態IP鏈接Internet網絡與Web服務器,因此,要申請域名,申請域名解析服務后可以通過域名自動建立通信。接入CDMA網絡前,需要向電信公司申請SIM卡,SIM卡可為CDMADTU提供鏈接Internet網絡服務。二是使用前需要用終端軟件或AT命令對參數設置,以決定進入網絡透明數據傳輸模式的工作方式。
2.3鋰電池供電模塊設計
植物生理檢測系統的實際應用環境很復雜,電源供給很難保障,因此,本設計中采用3.6V鋰電池供電。但植物生理檢測系統中傳感器模塊、CC2530等模塊需要不同的電源供給,因此,本設計采用DC-DC芯片NCP500SN33G獲得穩定的3.3V,該電壓適用于SOC工作電壓。采用TPS61040將3.6V自舉到適用于各類傳感器工作的12V電壓。其電路圖分別如圖4、圖5所示。
3系統軟件設計
3.1數據采集節點軟件設計
采集端傳感器節點主要負責采集植物各項生理信息并組網將數據發送給嵌入式網關。本設計采用IAR集成開發環境自底向上構建ZigBee網絡。為了節省電量,采用的傳感器節點一般處于低功耗模式,直到收到上位機命令后才將對應的檢測數據上傳到網關。為了提高效率,上位機可設置每隔一段時間后對傳感器發送上傳數據命令。另外,還采用了中值平均濾波算法來消除個別傳感器系統內部的隨機干擾,提高了傳感器的測量精度。
3.2嵌入式網關軟件設計
嵌入式網關的軟件設計是建立在Linuxredhatlinux操作系統上的,該操作系統具有多任務操作進程、支持硬件廣泛、程序模塊化、源代碼公開等諸多優點而被廣泛使用。使用IAR集成開發環境來建立嵌入式網關和遠程檢測管理中心的網絡連接。
3.3上位機軟件設計
系統采用LabVIEW平臺編寫上位機軟件,根據設計要求,將軟件分為數據顯示模塊、數據分析模塊、數據存儲三大模塊。數據顯示模塊主要是將接收到的數據和分析后的結果顯示在上位機的前面板上。數據分析模塊主要是根據所要檢測植物參數的不同選擇合適的分析和處理方法。本系統分析模塊實現的功能是:當測量數據在正常范圍內時指示燈顯示綠色,表示植物長勢正常。當某一參數超出或者低于正常范圍時,其對應的指示燈顯示紅色報警。數據存儲模塊主要是將數據存儲到數據庫中,由于LabVIEW不能直接訪問數據庫,因此,采用SQL語言來完成對數據庫的訪問。
4實驗結果與分析
為了對設計的系統性能各方面進行驗證,在29℃的溫室環境下選擇了4株番茄做為測試對象,4株番茄均勻分布于250mm×250mm的測試區域,將協調器放置在溫室的中心區域從而組建星型網絡結構。每株番茄同時采集莖流、葉綠素含量、番茄果實的直徑等生理參數并將參數發送到上位機顯示界面,采集間隔為2h,總檢測時間為24h。
5結論
系統概述
待檢測車輛需要經過檢測通道,如圖1所示。將紅外攝像頭放置于通道中間,獲得車底部熱感應圖像。為了獲取較廣的視角以及較小形變的圖像,紅外攝像頭安放的仰角為40°。由于監控室與檢測通道的距離較遠,且通道數較多,因此需要通過光端機將所獲取的視頻傳輸給監控室控制臺PC機。檢測軟件根據本文提出的檢測算法對捕獲到的圖像進行分析,若判斷車輛底部藏人則向系統發出報警信號,以便其通過控制安全桿做出相應攔截措施。視頻傳輸示意圖,如圖2所示。
軟件設計
軟件設計采取的基本實現策略是先定位后檢測。首先進行運動車輛檢測,其次根據車輛的自身特征,定位可疑目標在車輛底部可能的藏匿部位。當區域定位完成后,對該區域進行感興趣區域(RegionOfInterest,ROI)的選取。最后對ROI進行檢測,判斷是否藏人。檢測系統流程圖如圖3所示。通過對車輛的掃描檢測過程,查出藏匿于車底的可疑目標,實現自動檢測。
1圖像去噪
圖像去噪是圖像預處理的一個環節,也是整個圖像預處理中的關鍵一步。在對運動車輛定位的過程中,針對車輛與環境對比度大、信息豐富,受噪聲影響較小等特點,只需對圖像采用常規的均值濾波進行處理。而在檢測目標時,為了在去除噪聲的同時,最大程度的保存目標的邊緣信息,采用了基于開關控制的組合濾波。濾波器的基本思路是將圖像劃分為三類區域:孤立噪聲點區、平坦區和邊緣信息區。其主要處理原則為:孤立噪聲點區的灰度與其鄰域往往有較大的差異,可按照椒鹽噪聲進行處理,選用中值濾波器;平坦區往往包含高斯噪聲,可采用加權均值濾波器加以消除;邊緣信息區包含了圖像的細節信息,應作為保留區域不做處理。將處理后的三個區域加以合成,即得到了去噪后的圖像。
濾波器性能的關鍵在于分類開關的設計,借用順序統計濾波的思路,將濾波器設計成N×N的掩模算子,N為奇數,使該掩模在整個圖像上滑動,對它所覆蓋的圖像中的像素點xi進行排序,得到序列x(1),x(2)……x(N^2),利用排序結果設計下面的分類規則:a、b為排序后的位置偏移量,Ta和Tb為閾值?;陂_關控制的組合濾波算法就包括這么幾個步驟:(1)對掩模覆蓋的圖像像素點進行排序;(2)利用分類規則進行三個區域劃分;(3)對孤立噪聲點區進行中值濾波,對平坦區進行均值濾波;(4)將處理后的區域合成,得到去噪圖像。
2車輛檢測及目標區域的定位
2.1運動車輛檢測
對于實時性要求較高的場合,運動目標的檢測一般用背景差分法和幀間差分法。背景差分法是利用序列中當前幀圖像與背景圖像的差分來消除背景、提取運動目標區域的一種技術。背景差分法可根據實際情況設定差分閾值,所得到的結果直接反映了運動目標的大小、形狀和位置,可以得到比較精確的運動目標信息,但該方法應用于紅外目標檢測時易受環境溫度、天氣等外界條件變化的影響。幀間差分法是利用視頻序列中連續的兩幀或多幀圖像的差異來檢測和提取運動目標。該方法對場景的變化不太敏感,適用于動態環境,穩定性好。不足之處是:1)無法抽取完整的運動目標,僅能得到運動目標的邊界;2)運動目標提取效果依賴于幀間時間間隔的合理選擇。本文針對待檢測目標所處背景在短時間內為靜態背景,而較長時間內背景會發生動態變化的特點,并結合兩種方法的優點,設計出改進的背景差分法。算法原理圖如下:其中F(K)為當前幀,B為通過隔幀幀差法求得的當前背景圖像,D為差分結果圖,R為二值化圖像。
該算法繼承了幀間差分法對場景變化不太敏感的優點,能準確更新背景差分法所需要的當前背景圖,進而提取出完整的運動目標。下面是采用基本背景差分法和改進后背景差分法,在不同時候背景更新保存的背景圖片?;颈尘安罘址ㄔ谙到y長時間運行之后,會出現背景更新出錯,檢測流程紊亂,從而產生檢測系統失效現象。而采用改進的背景差分法,即使是經過長時間運行,系統也能確保背景更新的準確。
2.2目標區域定位
由于運動車輛特性已知,在其運動的過程中,可以通過對目標局部圖像進行特征提取,定位可疑區域。目標的一般特征包括點、邊緣、區域和輪廓。點特征對圖像的分辨率、旋轉、平移、光照變化等有很好的適應性,常用的點特征描述算子如SIFT、SURF等都具有很高的精度,但這些算法復雜度高,難以滿足實時檢測的要求,并且紅外圖像特征點往往較少,采用點描述算子并不能達到令人滿意的效果。因此本文根據實際目標的特性,采用了對線、面特征進行描述的方法來標注運動車輛。運動的車輛受車底傳動抽、燃燒室以及空間限制,目標一般躲藏于車廂后輪位置。
為了準確定位目標區域,目標區域進入視場之前的運動車輛局部特征需要重點描述。車廂底部進入攝像頭視場時如圖6(a)所示。為了提取車輛的直線特征,需要對車底圖像進行邊緣提取。常見的邊緣檢測算子有:Laplace、Sobel以及Canny等。由于Laplace算子常常會產生雙邊界,而Sobel算子又往往會形成不閉合區域,對后面直線檢測都會產生不利的影響。
Canny算子克服了上述算子的缺陷,能夠盡可能多的標識出圖像中的實際邊緣,并且能夠將較小的間斷點進行連接,因此能夠形成較為完整的邊界線。Canny算子是最優的階梯型邊緣檢測算法,本文采用選用Canny算子進行圖像的邊緣檢測。邊緣檢測結果如圖6(b)所示,較為明顯且具有特征不變性的為直線邊緣。當可能藏人的區域進入攝像頭視場時,車底圖像的直線特征隨之消失(如圖6(c)),因此可以利用圖像的直線特征來定位后輪檢測區域。Hough變換檢測直線是較為理想的直線檢測方法,由PaulHough于1962年提出。經過Hough變換后,根據已知的目標直線位置、角度、長度,選取符合條件的直線。圖6(b)、(c)中白色粗線為所檢測出的目標直線。
受環境因素的影響,車底直線特征可能并不明顯,因此單一的直線特征提取難以滿足檢測精度要求,如圖7所示情況。實驗發現車底面特征不易受到周圍環境、溫度的影響,因此可以進行面特征提取。選定區域為圖6(b)中虛線框內,滿足要求的特征為梯度小于一定閾值,即具有平滑特征,判斷方法是計數虛線框內邊緣點數,判斷其是否小于給定閾值。采用Sobel內核計算圖像差分其中src為輸入圖像,dst為輸出圖像,xorder為x方向的差分階數,yorder為y方向的差分階數。
由于當車底藏人時,其進入攝像頭視場會阻斷車底原有的平滑特征如圖6(d),因此當平滑特征消失時,這時判斷是否符合定位位置特征,若符合即可進行定位檢測;若車底沒有藏人時,車底平滑特征會持續到車尾部位才結束,這時只需判斷到達車尾就可以結束檢測流程。
實驗表明,基于這種車箱底部中間區域光滑特征去定位檢測對環境適應能力強,而基于兩側直線特征定位的方法又能夠比較準確的定位到目標區域。綜合上述兩種思路,設計出的定位流程如下圖8所示:應用中是否滿足直線以及平滑特征是通過檢測連續多幀圖像來實現的,這樣可以盡量減少偶然因素導致的定位失敗。
3藏人的檢測
3.1基于高亮度特征的ROI的選取
如圖9為定位之后的待檢測目標圖。為了排除車底本身熱源的干擾(如車輪)縮小檢測范圍,必須對原圖進行ROI的選取。行進過程中的車輪一般在紅外圖像中會呈現高亮度特征?;诖颂卣?,從圖片左右兩側分別搜索列像素平均灰度值最高的部分(最可能為車輪內鋼圈),加上一定偏移量即可求出ROI左邊界位置(PositionofLeft,PL)。ROI下邊界線也采用同樣的方法,上邊界采用默認值。當車輪不明顯時采用默認感興趣區域即可下面圖9為采用固定ROI選取和基于高亮度特征的ROI提取結果對比。實驗表明,這種基于具體特征的感興趣區域提取方法,對于車輪出現的偏差具有良好的適應性,即使車輛行駛時發生較大的偏移也能做出正確的ROI選取。
3.2目標的檢測
對于已知形狀、外貌以及姿態等特征目標檢測采用特征匹配、直方圖反向投影等方法都能取得較為理想的效果。但對于躲藏姿勢未知并且本身形狀較為模糊的紅外目標,采用匹配的方式效果并不明顯。
紅外目標與目標區域的周圍存在一定的灰度差異,改變了原有區域梯度小、較為平滑的特征。針對這種改變采用評價函數f(x,y)對目標區域進行評估,若達到一定的閾值,即可預判車底藏人。評價函數依據不同區域可疑信息權重不一樣而選定(ROI內中間部位權重較高、四周權重較低),表示如下其中T為警戒閾值,Warnflag為預警標志。具體檢測步驟如下:
1)對原圖的感興趣區域進行組合濾波處理;
2)對感興趣區域進行邊緣梯度檢測(圖10);
3)采用評價函數對目標區域進行評分并判斷是否超過給定閾值;
4)重復步驟1-3,若連續三幀超出閾值則發出報警指令,否則表示無人。對應的報警截圖如圖11所示
實驗結果
為了驗證系統工作的穩定性以及算法的可靠性,在不同的貨檢口岸、時間段、天氣條件進行了多次實驗。測試結果如下。結果表明,在不同月份檢測誤報率十分低,漏報率也能滿足相應指標。設計出的車底藏人自動檢測系統有很高的實用價值,達到了預期的目標,說明了這套檢測系統的可靠性和準確性。軟件界面如圖12所示。
關鍵詞:健康監測監測系統監測項目橋梁
20世紀橋梁工程領域的成就不僅體現在預應力技術的發展和大跨度索支承橋梁的建造以及對超大跨度橋梁的探索,而且反映于人們對橋梁結構實施智能控制和智能監測的設想與努力。近20年來橋梁抗風、抗震領域的研究成果以及新材料新工藝的開發推動了大距度橋梁的發展;同時,隨著人們對大型重要橋梁安全性、耐久性與正常使用功能的日漸關注,橋梁健康監測的研究與監測系統的開發應運而生。由于橋梁監測數據可以為驗證結構分析模型、計算假定和設計方法提供反饋信息,并可用于深入研究大跨度橋梁結構及其環境中的未知或不確定性問題,因此,橋梁設計理論的驗證以及對橋梁結構和結構環境未知問題的調查與研究擴充了橋梁健康監測的內涵。本文結合近十年來橋梁健康監測的研究狀況以及大跨度橋梁工程的研究與發展,較系統地闡述橋梁健康監測的內涵,并由此探討監測系統設計的有關問題。
一、橋梁健康監測系統與理論發展簡況
1.監測系統
80年代中后期開始建立各種規模的橋梁健康監測系統。例如,英國在總長522m的三跨變高度連續鋼箱梁橋Foyle橋上布設傳感器,監測大橋運營階段在車輛與風載作用下主梁的振動、撓度和應變等響應,同時監測環境風和結構溫度場。該系統是最早安裝的較為完整的監測系統之一,它實現了實時監測、實時分析和數據網絡共享。建立健康監測系統的典型橋梁還有挪威的Skarnsundet斜拉橋(主跨530m)[2]、美國主跨440m的SunshineSkywayBridge斜拉橋、丹麥主跨1624m的GreatBeltEast懸索橋[3]、英國主跨194m的Flintshire獨塔斜拉橋[4]以及加拿大的ConfederatiotBridge橋[5]。我國自90年代起也在一些大型重要橋梁上建立了不同規模的結構監測系統,如香港的青馬大橋、汲水門大橋和汀九大橋,內地的上海徐浦大橋以及江陰長江大橋等[6~8]。
從已經建立的監測系統的監測目標、功能以及系統運行等方面看,這些監測系統具有以下一些共同特點:
(1)通常測量結構各種響應的傳感裝置獲取反映結構行為的各種記錄;
(2)除監測結構本身的狀態和行為以外,還強度對結構環境條件(如風、車輛荷載等)的監測和記錄分析;同時,試圖通過橋梁在正常車輛與風載下的動力響應來建立結構的"指紋",并藉此開發實時的結構整體性與安全性評估技術;
(3)在通車運營后連續或間斷地監測結構狀態,力求獲取的大橋結構信息連續而完整。某些橋梁監測傳感器在橋梁施工階段即開始工作并用于監控施工質量;
(4)監測系統具有快速大容量的信息采集、通訊與處理能力,并實現數據的網絡共享。
這些特點使得大跨度橋梁健康監測區別于傳統的橋梁檢測過程。另外需要指出的是,橋梁健康監測的對象已不再局限于結構本身:一些重要輔助設施的工作狀態也已納入長期監測的范圍(如斜拉索振動控制裝置[4]等)。
2.理論研究
十多年來,橋梁健康監測理論的研究主要集中于結構整體性評估和損傷識別。由于基于振動信息的整體性評估技術在航天、機械等領域的深入研究和運用,這類技術被用于土木結構中除無損檢測技術以外的最重要的整體性評估方法并得到廣泛的研究【1,7,9~11】。人們致力于基于振動測量值的整體性評估方法研究的另一個原因是,結構振動信息可以在橋梁運營過程中利用環境振動法獲得,因此這一方法具有實時監測的潛力。
結構整體性評估方法可以歸結為模式識別法、系統識別法以及神經網絡方法三大類【1】。結構模態參數常被用作結構的指紋特征,也是系統識別方法和神經網絡法的主要輸入信息。另外,基于結構應變模態、應變曲率以及其他靜力響應的評估方法也在不同程度上顯示了各自的檢傷能力[10]。然而,盡管某些整體性評估技術已在一些簡單結構上有成功的例子,但還不能可靠地應用于復雜結構。阻礙這一技術進入實用的原因主要包括:①結構與環境中的不確定性和非結構因素影響;②測量信息不完備;③測量精度不足和測量信號噪聲;④橋梁結構贅余度大并且測量信號對結構局部損傷不敏感。
另外,從評估方法上,目前對大跨度橋梁的安全評估基本上仍然沿襲常規中小橋梁的定級評估方法,是一種主要圍繞結構的外觀狀態和正常使用性能進行的定性、粗淺的安全評價。
二、橋梁健康監測新概念
橋梁健康監測的基本內涵即是通過對橋梁結構狀態的監控與評估,為大橋在特殊氣候、交通條件下或橋梁運營狀況嚴重異常時觸發預警信號,為橋梁維護濰修與管理決策提供依據和指導。為此,監測系統對以下幾個方面進行監控:
·橋梁結構在正常環境與交通條件下運營的物理與力學狀態;
·橋梁重要非結構構件(加支座)和附屬設施(如振動控制元件)的工作狀態;
·結構構件耐久性;
·大橋所處環境條件;等等。
與傳統的檢測技術不同,大型橋梁健康監測不僅要求在測試上具有快速大容量的信息采集與通訊能力,而且力求對結構整體行為的實時監控和對結構狀態的智能化評估。
然而,橋梁結構健康監測不僅僅只是為了結構狀態監控與評估。由于大型橋梁(尤其是斜拉橋、懸索橋)的力學和結構特點以及所處的特定環境,在大橋設計階段完全掌握和預測結構的力學特性和行為是非常困難的。大跨度索交承橋梁的設計依賴于理論分析并過風洞、振動臺模擬試驗預測橋梁的動力性能并驗證其動力安全性。然而,結構理論分析?;诶硐牖挠邢拊x散模型,并且分析時常以很多假定條件為前提。在進行風洞或振動臺試驗時對大橋的風環境和地面運動的模擬也可能與真實橋位的環境不全相符。因此,通過橋梁健康監測所獲得的實際結構的動靜力行為來驗證大橋的理論模型、計算假定具有重要的意義。事實上,國外一些重要橋梁在建立健康監測系統時都強調利用監測信息驗證結構的設計。
橋梁健康監測信息反饋于結構設計的更深遠的意義在于,結構設計方法與相應的規范標準等可能得以改進;并且,對橋梁在各種交通條件和自然環境下的真實行為的理解以及對環境荷載的合理建模是將來實現橋?quot;虛擬設計"的基礎。
還應看到,橋梁健康監測帶來的將不僅是監測系統和對某特定橋梁設計的反思,它還可能并應該成為橋梁研究的"現場實驗室"。盡管橋梁抗風、抗震領域的研究成果以及新材料新工藝的出現不斷推動著橋梁的發展,但是,大跨度橋梁的設計中還存在很多未知和假定,超大跨度橋梁的設計也有許多問題需要研究。同時,橋梁結構控制與健康評估技術的深入研究與開發也需要結構現場試驗與調查。橋梁健康監測為橋梁工程中的未知問題和超大跨度橋梁的研究提供了新的契機。由運營中的橋梁結構及其環境所獲得的信息不僅是理論研究和實驗室調查的補充,而且可以提供有關結構行為與環境規律的最真實的信息。另外,橋梁振動控制與健康評估技術的開發與應用性也需要現場試驗與調查。
綜上所述,大型橋梁健康監測不只是傳統的橋梁檢測加結構評估新技術,而是被賦予了結構監控與評估、設計驗證和研究與發展三方面的意義。
三、健康監測系統設計
1.監測系統設計準則
兩座大型橋梁健康監測系統的測點布置情況可以看出,兩個監測系統的監測項目與規模存在很大差異。這種差異除了橋型和橋位環境因素外,主要是因為對各監測系統的投資額和(或)建立各個系統的目的(或者說是對系統的功能要求)不同。因此,橋梁監測系統的設計實際上有意或無意地遵循著某些準則。
顯然,監測系統的設計應該首先考慮建立該系統的目的和功能。上節所述的橋梁健康監測三方面的意義也正是橋梁健康監測的目的和功能所在。對于特定的橋梁,建立健康監測系統的目的可以是橋梁監控與評估,或是設計驗證,甚至以研究發展為目的;也可以是三者之二甚至全部。一旦建立系統的目的確定,系統的監測項目就可以基本上確定。另外,監測系統中各監測項目的規模以及所采用的傳感儀器和通信設備等的確定需要考慮投資的限度。因此在設計監測系統時必須對監測系統方案進行成本一效益分析。成本-效益分析是建立高效、合理的監測系統的前提。
根據功能要求和成本一效益分析可以將監測項目和測點數設計到所需的范圍,可以最優化地選擇并安裝系統硬件設施。因此,功能要求和效益-成本分析是設計橋梁健康監測系統的兩大準則。
2.監測項目
不同的功能目標所要求的監測項目不盡相同。絕大多數大跨度橋梁監測系統的監測項目都是從結構監控與評估出發的,個別也兼顧結構設計驗證甚至部分監測項目以橋梁問題的研究為目的[5]。文獻[12]通過對國內多座運營中的斜拉橋進行大量病害調查與檢測分析,提出了用于斜拉橋狀態監控與評估的頗具代表性的監測項目。
如果監測系統考慮具有結構設計驗證的功能,那就要獲得較多結構系統識別所須要的信息。因此,對于大跨度余支承橋梁,須要較多的傳感器布置于橋塔、加勁梁以及纜索/拉索各部位,以獲得較為詳細的結構動力行為并驗證結構設計時的動力分析模型和響應預測。另外,在支座、擋塊以及某些連結部位須安設傳感器拾取反映其傳力、約束狀況等的信息。
目前,某些監測系統以開發結構整體性與安全性評估技術為目的之一。結合橋梁問題研究的監測系統雖不多見,但有些系統也有監測項目是專為研究服務的。與理論研究相關的監測項目可以根據待研究問題的性質來確定。從目前橋梁工程的發展狀況看,以下幾方面的問題可以借助橋梁健康監測進行深入研究或論證。
·抗風方面:包括風場特性觀測、結構在自然風場中的行為以及抗風穩定性。
·抗震方面:包括研究各種場地地面運動的空間與時間變化、土-結構相互作用、行波效應、多點激勵對結構響應的影響等。通過對墩頂與墩底應變、變形及加速度的監測建立恢復力模型對橋梁的抗震分析具有重要的意義。
·結構整體行為方面:包括研究結構在強風、強地面運動下的非線性特性,橋址處環境條件變化對結構動力特性、靜力狀態(內力分布、變形)的影響等。這對于發展基于監測數據的整體性評估方法非常重要。
·結構局部問題:例如邊界、聯接條件,鋼梁焊縫疲勞及其他疲勞問題,結合梁結合面(包括剪力鍵)的破壞機制,等等。索支承橋梁纜(拉)索和吊桿的振動與減振、局部損傷機制等也值得進一步觀察研究。
·耐久性問題:橋梁結構中的耐久性問題尚有許多問題須要深入研究。纜(拉)索與吊桿的腐蝕、銹蝕問題尤須重視。
·基礎:大直徑樁的采用也帶來一些設計問題,直接套用原先用于中等直徑樁的計算方法不很合理。借助大型橋梁監測系統調查大直徑樁的變形規律、研究樁的承載力問題,也是設計部門的需要。
四、小結
(1)橋梁結構健康監測不只是傳統的橋梁檢測技術的簡單改進,而是運用現代傳感與通信技術,實時監測橋梁運營階段在各種環境條件下的結構響應與行為,獲取反映結構狀況和環境因素的各種信息,由此分析結構健康狀態、評估結構的可靠性,為橋梁的管理與維護決策提供科學依據。同時,大型橋梁結構健康監測對于驗證與改進結構設計理論與方法、開發與實現各種結構控制技術以及深入研究大型橋梁結構的未知問題具有重要意義。因此,健康監測為橋梁工程的發展開辟了新的空間。
(2)大型橋梁健康監測三方面的意義反映了從事橋梁維護管理、設計咨詢和理論研究不同領域人員所關注的問題。監測系統的設計應以功能要求和效益-成本分析為基本準則。此外,監測系統的設計應該通過布點優化分析,并且考慮到系統實施中的非常重要的通信問題。