時間:2023-03-29 09:24:14
序論:在您撰寫制冷技術論文時,參考他人的優秀作品可以開闊視野,小編為您整理的7篇范文,希望這些建議能夠激發您的創作熱情,引導您走向新的創作高度。
(1)水泵運行曲線.水泵采用傳統的方式運行,在一般的情況下它的流量和揚程是成反比的。當水泵的流量降低時,壓力也會升高,會增大管網的危險性。(2)變頻技術在電動機的調試過程中的調速性能最好,在運行過程中效率比其他設備的工作效率要高,穩定性也比較好。利用變頻技術對制冷系統中電動機收稿日期:2014-12-24作者簡介:謝修勝(1966-),男,安徽淮南市人,大學畢業,助理工程師,現在國投新集能源股份有限公司劉莊煤礦自動化進行調速有很高的經濟效益,所以變頻技術成為礦井制冷系統中運用越來越廣泛的技術。
2變頻技術改造
2.1離心泵與管理特性曲線
從圖1可看出,離心泵在制冷系統的管路工作中,無論出于哪一種工作狀態下,都只有一個工作點,如圖中A、B、C三個工作點。這三個工作點也是離心泵的工作曲線與管路工作曲線的交點。離心泵若在B點工作,泵輸出的能量比管路所需要的能量要高出很多,加大了流量,增加了管路的摩擦和阻力;離心泵若在C點工作,泵輸出的能量比管路所需要的能量要少,減少了流量。只有離心泵在A點工作時,泵輸出的能量等同于管路所需要的能量。
2.2水泵工作狀態
水泵轉速與水泵的流量和揚程成正比,水泵在制冷運行的過程中為了保證始終處于高效率區間內,就要調整水泵的運行模式,也就是根據實際的需要對水泵的數量進行增減,提高整個礦區的制冷效率,降低制冷降溫所消耗的能量。
3變頻技術實施
3.1變頻器
礦井下冷凍水循環的制冷系統中,每臺變頻器都會帶著一臺水泵,這樣在水泵的運行過程中,即使由于季節的變化給制冷系統帶來的負荷程度存在一定差異,變頻設備都能根據工作面的承受狀況,調節冷凍水循環的流量。變頻器是由本體、電抗器、濾波器以及其他輔助的機器構成,變頻器是對制冷系統中電動機轉動的速度進行控制,并且對制冷系統中可能會發生的故障加以預防,其工作原理主要是依靠變頻器每個構成機器間的相互配合。變頻器在使用之前要進行調試,調試成功之后才能正式投入運行。具體操作步驟是在電源接通后,將變頻器上的轉換開關調換到近距離控制模式,礦井制冷系統中電動機在不同溫度下運行的所需溫度,都可以通過在變頻器上選擇不同的速度來實現。如果在變頻器的運行或啟動時出現故障,都會自動停止運行或啟動。
3.2ABB變頻器
ABB公司的變頻器中,根據制冷系統不同的負荷來調節冷卻水的循環流量,主要是依靠對頻率輸出的控制,進而控制電動機輸出軸的功率。地面的冷卻水循環系統安裝了5臺循環水泵。
3.3運行方式
礦井制冷系統中關于變頻器的運用分為兩種模式,根據溫度對礦井制冷的需求分為夏季和冬季。夏季時,礦井對制冷降溫的要求比較高,所以制冷系統對熱量的負荷比較重,這也增加了冷卻水的流量。針對這樣的情況,可以通過調整變頻器的頻率,使變頻器與水泵達到同時運行的模式,來滿足礦井制冷降溫的要求。冬季時,礦井對制冷的要求相對要低得多,那么制冷系統對熱量的負荷也隨之降低,同時也減少了對冷卻水流量的要求。所以可以減少水泵的臺數,采用2臺水泵的運行,并且要求每臺水泵的運行頻率為30HZ左右。并且,由于水泵在冬季消耗的能量較低,一般采用低能耗的運行模式。
4結論
關鍵詞:制冷;供暖;環保;節能
0前言
我們知道,所有生物過程都受到溫度的影響,低溫抑制食品中酵、霉菌的繁殖,人體對溫度也非常敏感。在現代社會,制冷空調技術已經幾乎滲透到各個生產技術、科學研究領域,并在改善人類的生活質量方面發揮巨大作用。生活中,制冷廣泛用于食品冷加工、冷貯藏、冷藏運輸,舒適性空氣調節,體育運動中制造人工冰場等;工業生產中,為生產環境提供必要恒溫恒濕環境,對材料進行低溫處理,利用低溫進行零件間的過盈配合等;農牧業中,對農作物種子進行低溫處理等;建筑工程中,利用制冷實現凍土開采土方;現代醫學也離不開制冷,深低溫冷凍骨髓和外周血干細胞、手術中的低溫麻醉等;制冷技術還在尖端科學領域如微電技術、新型材料、宇宙開發、生物技術的研究和開發中起著舉足輕重的作用。可以說,現代技術進步是伴隨著制冷空調技術發展起來的。
技術是人類歷史過程中發展著的勞動技能、技巧、經驗和知識,它包括人類技術活動中的硬件和軟件,是人類改造自然和創造人工自然的方法、手段的活動的總和。其中,制冷空調技術的發展對人類的影響尤為重要。
1制冷空調新技術的發展
1.1冰蓄冷技術的發展應用
發展冰蓄冷技術的重要性和必要性:現代空調設備已成為人們生產與生活的迫切需要。空調用電量已占建筑物總耗電量的60%—70%。當前由于能源緊缺,電力緊張,空調事業的發展受到極大的影響。眾所周知,冰蓄冷空調就利用非峰值電能,使制冷機在最佳節能狀態下運行,將空調系統所需要的顯熱與潛熱的形式部分或全部釋放的冷量來滿足空調系統冷負荷時,即用融冰釋放的冷量來滿足空調系統冷負荷的需要,用來儲存冰的容器成為蓄冷設備,冰蓄冷空調技術可以對用電起到移峰填谷的作用,在且可增強系統的穩定性,并能大大提高經濟效率。
1.2低溫空氣源熱泵在城市供熱和制冷上的應用
空氣源熱泵技術是基于逆卡若循環原理建立起來的一種節能、環保制熱技術。空氣源熱泵系統通過自然能(空氣蓄熱)獲取低溫熱源,經系統高效集熱整合后成為高溫熱源,用來取(供)暖或供應熱水,整個系統集熱效率甚高。空氣源熱泵使用范圍廣,產品適用溫度范圍在-10-40°C,并且一年四季全天候使用,不受陰、雨、雪等惡劣天氣和冬季夜晚的影響,都可以正常使用;熱效率高:產品熱效率全年平均在300%以上;熱泵產品無任何燃燒排放物,制冷劑選用了環保制冷劑R417A,對臭氧層零污染,是較好的環保型產品。因此,低溫空氣源熱泵特別在北方夏熱凍冷的城市供熱和制冷有著廣泛的應用。1.3中央空調冷凝熱回收利用
如今,星級賓館、酒店,都設有中央空調系統和24小時熱水供應,多數情況下冷、熱源分別設置,用冷水機組提供冷源,蒸汽或熱水鍋爐提供熱源。眾所周知,冷水機組在運行時要通過冷卻水系統排出大量的冷凝熱,在制冷工況下運行,冷凝熱可達制冷量的1.15—1.3倍。利用高溫水源熱泵回收這部分冷凝熱輸出的65度的熱水作為生活熱水,會是一條變廢為寶的節能途徑。
2技術發展的負面效應及控制
當代的技術革命,正在形成新型的生產力、形成新型生產方式、形成新型的市場交換方式、形成新的產業結構和就業結構、形成新的財產占有方式和分層結構、形成新型的權力和組織管理結構,技術正面效應和負面效應是客觀必然的。人類有了其他一切生物所不曾具有的思維、精神和語言,人類運用自己的聰明和才智創造了豐富的物質文明,人類也必須對技術的負面效應做出回應。
徹底消除科技的負面作用是不可能的,我們唯一能做的是在科學技術活動盡量規避和抑制其負作用。臭氧層的破壞和全球氣候變化,是當前全球所面臨的主要環境問題。
我國的在制冷空調行業起步較晚,但是經過了幾十年的發展,雖然還存在一些不完善的方面,但是總體來說已經取得了一定的成績。但是與發達國家先進的制冷空調相比較,我國的制冷空調在節能技術方面存在很大不足,大多是采用的國外先進技術,并沒有自己的研發成果。瑕不掩瑜,我國的制冷企業已經充分注意到制冷空調節能技術的重要性,特別是近年來大力推動了新技術、新工藝的研發工作,目前已經具備了一定程度的研發能力,與西方發達國家在制冷空調節能技術之間的差距正在不斷縮小。
2制冷空調技能技術
制冷空調節能技術主要的目的就是要實現合理用能,并且降低電力高峰期的符合,現階段主要的制冷空調節能技術主要有七種,分別是:蓄冷技術、燃氣技術、太陽能技術、熱電冷聯產技術、熱泵技術、熱聲制冷技術以及人工智能技術。
2.1蓄冷技術
現階段空調用電量已經占據了人們生活總耗電量中的70%左右,并且由于電力緊張以及能源緊缺現狀的不斷加劇,促進了制冷空調新技術的研發。蓄冷技術是在這種條件下被研發出來的,該技術就是使空調在非高峰期用電來保持最佳節能狀態,此時空調系統的冷負荷由所需的潛熱的形式釋放冷量來滿足,也就是通常所說的,空調系統冷負荷使用融冰釋放的冷量來滿足,蓄冷設備也就是儲存冰的容器,這樣的空調不僅可以提高本身的經濟效率,還能夠增強系統穩定性。按照我國每年新增3億m2的商用建筑,如果均使用蓄冷空調系統,每年可為國家節電40億元,節煤330萬噸。
2.2燃氣制冷技術
燃氣空調的使用,不僅可以降低空調使用對于電網的負荷,也可以提高能源的一次利用率,對于減少污染,平衡冬夏季燃氣用量具有非常重要的意義。經過相關部門的測算,如果燃氣制冷量1×107萬RT,消耗天然氣約6×108m3,這些制冷量就相當于少發電3.5×107KW,這種技術不僅提高了電力設備的運轉利用率,還能夠節約發電設備的投資。隨著我國城市燃氣管網的逐步完善,燃氣空調必然得到快速的發展和應用,此外國家也推出了一系列的政策支持燃氣空調的發展,其對于提高能源利用率、緩解夏冬季用電高峰、提高能源供應安全具有非常重要的意義。
2.3太陽能制冷技術
目前太陽能空調主要有兩條技術路線,分別是通過光熱轉換,以熱能制冷,另一種是以光電轉換,利用電力制冷,而現階段應用較多的就是熱能制冷。作為一種可再生的資源,太陽能的應用對于緩解能源供需矛盾、控制環境污染具有非常明顯的效果。但是太陽能光伏/光熱發電再制冷的技術在制冷空調中的應用并未取得顯著地效果,一個原因是成本過高,另一個就是能源利用率較低。而利用太陽能進行光熱直接驅動的空調雖然性能系數趕不上傳統的機械式空調,但是由于其成本較低,并且具有較高的能源利用率,因此其是目前應用最為廣泛的一種太陽能制冷空調。雖然太陽能具有可再生的特性,但是由于其能量供應具有隨機性而且能源密度也較低,給其大規模擴展應用帶來了一定的阻力?,F階段的太陽能制冷技術的應用首先就要解決其可靠性、穩定性,并且相應的提高系統性能系數以及效率。最后,也可以將太陽能制冷技術與其他能源技術結合,形成一個多能源系統,充分利用廢熱、廢氣以及其他能源。
2.4熱泵技術
熱泵技術主要有兩種,分別是水源熱泵技術和土壤源熱泵技術。熱泵技術具有性能可靠、無污染、高效節能的優點,可以在夏季制冷、冬季制熱,并提供一定數量的生活熱水,此外配套的熱泵系統還具有結構簡單、可靠性高、節能效果好的優點。鑒于其明顯的節能降耗優勢,其已經在國外得到了廣泛的應用,并且在我國也有了很多的應用實例,通過對比,我們總結出:雖然熱泵技術的初期投入與中央空調基本持平,但是其投入運行后的使用費用遠遠低于傳統的中央空調。據相關部門估算,我國地級以上城市每年淺層地熱能可利用資源量相當于3.56億噸標準煤,扣除消耗電量,可節約相當于2.48億噸標準煤。
2.5熱電冷聯產技術
作為一種綜合利用能源的系統,熱電冷聯產技術不僅增加了熱電聯產中的夏季熱負荷,提高了汽輪機組的負荷率,實現了機組效率的提升,還能夠提高低品位熱能的利用率。燃氣輪機發電是以天然氣為動力源,并且將廢熱直接排放到吸收式冷熱水機組,長生了用于制冷的冷凍水,并且將熱量應用在除濕型空調上面,這樣就可以大幅度增加熱電冷聯產的綜合效率。該技術的節能效果非常顯著,至少在10%以上,因此我國近年來也開展了該技術的應用,例如上海的黃浦區中心醫院以及浦東國際機場都采用了燃氣輪機熱電冷聯產系統,具有非常明顯的節能效果。
2.6熱聲制冷技術
作為一種新發展起來的制冷技術,熱聲制冷技術與傳統的蒸汽壓縮式制冷技術相比,取消了對于環境具有破壞作用的制冷劑,直接使用惰性氣體或者惰性氣體的混合物作為制冷劑,減少了對于溫室效應的危害以及臭氧層的破壞。而且熱聲制冷技術具有結構簡單可靠、無需特殊材質,在制造成本具有非常大的優勢,而且它減少了活塞、劑的使用,在維護成本上同樣具有非常明顯的優勢。此外,熱聲制冷技術幾乎沒有現階段制冷系統的缺點,因此其可以成為未來制冷空調節能技術的主要發展方向。
2.7人工智能技術
隨著科學技術的不斷發展,人工智能技術已經廣泛應用在了人工工作和生活中的各個方面,人工智能技術主要應用在智能控制、負荷預測以及故障檢測和診斷等方面。但是由于人工智能技術在制冷空調中的應用仍處于初期階段,仍存在很多的不足,所以我們應將傳統的方針系統與人工智能制冷技能技術相結合,通過計算機技術的廣泛應用,實現空調制冷效率的最大提升,并且實現最大化的節能效果。
3結束語
1.1冰蓄冷技術的發展應用
發展冰蓄冷技術的重要性和必要性:現代空調設備已成為人們生產與生活的迫切需要。空調用電量已占建筑物總耗電量的60%—70%。當前由于能源緊缺,電力緊張,空調事業的發展受到極大的影響。眾所周知,冰蓄冷空調就利用非峰值電能,使制冷機在最佳節能狀態下運行,將空調系統所需要的顯熱與潛熱的形式部分或全部釋放的冷量來滿足空調系統冷負荷時,即用融冰釋放的冷量來滿足空調系統冷負荷的需要,用來儲存冰的容器成為蓄冷設備,冰蓄冷空調技術可以對用電起到移峰填谷的作用,在且可增強系統的穩定性,并能大大提高經濟效率。
1.2低溫空氣源熱泵在城市供熱和制冷上的應用
空氣源熱泵技術是基于逆卡若循環原理建立起來的一種節能、環保制熱技術。空氣源熱泵系統通過自然能(空氣蓄熱)獲取低溫熱源,經系統高效集熱整合后成為高溫熱源,用來取(供)暖或供應熱水,整個系統集熱效率甚高。空氣源熱泵使用范圍廣,產品適用溫度范圍在-10-40°C,并且一年四季全天候使用,不受陰、雨、雪等惡劣天氣和冬季夜晚的影響,都可以正常使用;熱效率高:產品熱效率全年平均在300%以上;熱泵產品無任何燃燒排放物,制冷劑選用了環保制冷劑R417A,對臭氧層零污染,是較好的環保型產品。因此,低溫空氣源熱泵特別在北方夏熱凍冷的城市供熱和制冷有著廣泛的應用。
1.3中央空調冷凝熱回收利用
如今,星級賓館、酒店,都設有中央空調系統和24小時熱水供應,多數情況下冷、熱源分別設置,用冷水機組提供冷源,蒸汽或熱水鍋爐提供熱源。眾所周知,冷水機組在運行時要通過冷卻水系統排出大量的冷凝熱,在制冷工況下運行,冷凝熱可達制冷量的1.15—1.3倍。利用高溫水源熱泵回收這部分冷凝熱輸出的65度的熱水作為生活熱水,會是一條變廢為寶的節能途徑。
2技術發展的負面效應及控制
當代的技術革命,正在形成新型的生產力、形成新型生產方式、形成新型的市場交換方式、形成新的產業結構和就業結構、形成新的財產占有方式和分層結構、形成新型的權力和組織管理結構,技術正面效應和負面效應是客觀必然的。人類有了其他一切生物所不曾具有的思維、精神和語言,人類運用自己的聰明和才智創造了豐富的物質文明,人類也必須對技術的負面效應做出回應。
徹底消除科技的負面作用是不可能的,我們唯一能做的是在科學技術活動盡量規避和抑制其負作用。臭氧層的破壞和全球氣候變化,是當前全球所面臨的主要環境問題。
3結語
人類利用技術手段對自然的利用和改造,必然改變自然界原有的平衡,問題是人類應該正確認識其活動對自然的正反兩方面的影響,提供適應自然規律的、有科學預見的、可調控的人類行為,使其所產生的后果,有利于人與自然關系的協調,使自然界更好地造福人類。相信技術的力量,相信人類依靠科技能夠戰勝各種困難,擺脫困境。人類謀求發展的能力是無窮的。然而,科技的力量的發揮和發展是要在一定的生產方式中進行的,它要受到經濟制度、社會制度的影響和約束。所以,當代科技發展必須遵循馬克思所說的統一的“人的科學”的宗旨,才能真正克服技術發展的負面效應,也只有這樣才能充分發揮科技發展的正面效應。制冷技術的發展和臭氧層保護就是近代史上技術進步和全球合作的一個十分典型的范例,其技術進步和控制技術進步后果的合作機制也將成為人類的財富,并將為解決其它重大問題提供寶貴的借鑒經驗。
關鍵詞:吸附制冷研究概況空調應用
1引言
吸附制冷系統以太陽能、工業余熱等低品位能源作為驅動力,采用非氟氯烴類物質作為制冷劑,系統中很少使用運動部件,具有節能、環保、結構簡單、無噪音、運行穩定可靠等突出優點,因此受到了國內外制冷界人士越來越多的關注。
吸附制冷的基本原理是:多孔固體吸附劑對某種制冷劑氣體具有吸附作用,吸附能力隨吸附劑溫度的不同而不同。周期性的冷卻和加熱吸附劑,使之交替吸附和解吸。解吸時,釋放出制冷劑氣體,并在冷凝器內凝為液體;吸附時,蒸發器中的制冷劑液體蒸發,產生冷量。圖1是吸附制冷的理想基本循環系統示意圖,圖2是理想基本循環熱力圖。
圖1理想基本循環系統示意圖圖2理想基本循環熱力圖
圖1中、為切換系統吸附/解吸狀態的控制閥門,為節流閥;圖2中、分別為吸附態吸附率和解吸態吸附率,、為吸附起始和終了溫度,、為解吸起始和終了溫度。吸附制冷理想基本循環的由四個過程組成:(1)12,等容升壓;(2)23,等壓解吸;(3)34,等容降壓;(4)41,等壓吸附。(1)(2)過程需要加熱,(3)(4)過程需要冷卻,12561為制冷劑循環過程,當吸附床處于41階段時,系統產生冷量。
2吸附制冷技術研究進展
吸附制冷工作原理最早是由Faraday提出的[1],而后在20世紀20年代才真正開始了吸附制冷系統的相關研究,由于當時提出的吸附制冷系統系統在商業上根本無法與效率高得多、功率大得多的系統競爭,因而并未受到足夠的重視。20世紀70年代的能源危機為吸附式制冷技術的發展提供了契機,因為吸附制冷系統可用低品位熱源驅動,在余熱利用和太陽能利用方面具有獨到的優點。進入20世紀90年代,隨著全球環境保護的呼聲越來越高,不使用氟氯烴作為制冷劑的吸附制冷技術引起了制冷界人士的廣泛興趣,從而使得吸附制冷技術的研究得以蓬勃的發展起來[2]。
吸附制冷吸附研究主要包括工質對性能、吸附床的傳熱傳質性能和系統循環與結構等幾個方面的工作,無論哪一個方面的研究都是以化工和熱工理論為基礎的,例如傳熱機理、傳質機理等等,限于篇幅,本文僅從技術發展的角度來概括吸附制冷的研究進展。
2.1吸附工質對性能研究
吸附制冷技術能否得到工業應用很大程度上取決于所選用的工質對,工質對的熱力性質對系統性能系數、初投資等影響很大,要根據實際熱源的溫度選擇合適的工質對。從20世紀80年代初到90年代中期,研究人員為吸附工質對的篩選做了大量的工作,逐漸優化出了幾大體系的工質對。按吸附劑分類的吸附工質對可分為:硅膠體系、沸石分子篩體系、活性炭體系(物理吸附)和金屬氯化物體系(化學體系)[2,3]。由于化學吸附在經過多次循環后吸附劑會發生變性,因而對幾種物理吸附類吸附體系的研究較多。幾種常用工質體系的工作特性總結于表1[4]。
表1固體吸附制冷工質對的工作特性和應用范圍工質對
制冷劑
毒性
真空度
系統耐壓強度
解吸溫度
℃
驅動熱能
標準沸點
℃
汽化潛熱
kJ/kg
沸石-水
100
2258
無
高
低
>150
高溫余熱
硅膠-水
100
2258
無
高
低
100
太陽能、低溫余熱
活性炭-甲醇
65
1102
有
高
適中
110
太陽能、低溫余熱
活性炭-乙醇
79
842
無
適中
適中
100
太陽能、低溫余熱
活性炭纖維-甲醇
65
1102
有
高
適中
120
太陽能、低溫余熱
氯化鈣-氨
-34
1368
有
低
高
95
太陽能、低溫余熱
近幾年來,研究人員在吸附工質對方面的研究始終沒有停止,從理論和實驗兩個方面對各種工質對的工作特性進行了廣泛的研究。綜合考慮強化吸附劑的傳熱傳質性能,開發出較為理想的、環保型吸附工質對,從根本上改變吸附制冷工業化過程中所面臨的實際困難,是推動固體吸附式制冷工業技術早日工業化的關鍵。
2.2吸附床的傳熱傳質性能研究
吸附床的傳熱傳質特性對吸附式制冷系統有較大的影響。一方面,吸附床的傳熱效率和傳質特性直接影響制冷系統對熱源的利用;另一方面,傳熱傳質越快,循環周期越短,則單位時間制冷量越大。因此,提高吸附床的傳熱傳質性能是吸附式制冷效率提高的關鍵。
傳質速率主要取決于吸附解吸速度和吸附劑的傳質阻力,吸附劑的傳質阻力主要是由其孔隙率決定的,此外制冷劑氣體在吸附劑內的流程也對傳質阻力有很大影響,合理的吸附劑填充方式和吸附器設計可以有效降低傳質阻力。對于傳熱來講吸附床主要存在兩種熱阻[6]:吸附換熱器的金屬材料(換熱管道與翅片)與吸附劑之間的接觸熱阻;固體吸附劑的傳熱熱阻。因此,改善吸附床的傳熱特性,主要從減小這兩個熱阻的角度出發,或者依靠增大換熱面積來增加總的換熱量,也就是通過合理的吸附器結構設計來增加換熱量。
在加強傳質性能方面,比較有效的方法是通過改變吸附劑顆粒的形狀增加床層孔隙率以及在吸附床設計時設置制冷劑氣體的流動通道。
吸附器傳熱性質的加強首先是對吸附劑的處理,目前比較公認的方法有:采用二元混合物,讓小顆粒吸附劑摻雜在大顆粒吸附劑之間以減小吸附床的松散性;在吸附劑中摻入高導熱系數材料;通過固結等手段改變顆粒形狀,增大相互之間的傳熱面積,減少顆粒間的接觸熱阻[5]。減小吸附劑與吸附器翅片或器壁之間接觸熱阻可采用壓實或粘貼等方法。在吸附床的設計上,比較成熟的吸附床結構有翅片管式、板式、螺旋板式等[6]。
傳熱和傳質的加強經常是關聯在一起的,二者有時是對立的有時是統一的,例如床層孔隙率的增加會減小傳質阻力,但卻導致導熱熱阻的增加;而一個結構設計良好的吸附器往往會同時對傳熱和傳質起到促進作用,例如Melkon[7]所采用的將沸石粉末以極薄的厚度粘附在換熱管表面上的做法。因此,在具體實施傳熱傳質強化措施時必須綜合全面的考慮,選取最佳的方案。
2.3系統循環與結構的研究
從工作原理來看,吸附制冷循環可分為間歇型和連續型,間歇型表示制冷是間歇進行的,往往采用一臺吸附器;連續型則采用二臺或二臺以上的吸附器交替運行,可保障連續吸附制冷。如果吸附制冷單純由加熱解吸和冷卻吸附過程構成,則對應的制冷循環方式為基本型吸附制冷循環。如果對吸附床進行回熱,則根據回熱方式不同,可有雙床回熱、多床回熱、熱波與對流熱波等循環方式。下面簡單闡述一下幾種循環的基本原理。
基本循環在吸附制冷基本原理中已作介紹,其制冷過程是間歇進行的,增加床數并通過閥門的切換可實現連續制冷,但床與床之間無能量的交換。
20世紀80年代后期,Tchernev[8]、Meunier和Douss[9]等構建了雙床回熱循環,所謂回熱即利用一個吸附床吸附時放出的吸附熱和顯熱作為另一個吸附床的解吸熱量,回熱的利用率將隨著床數的增加而增加?;責嵫h依靠床與床之間能量的交換來實現顯熱、吸附熱等熱量的回收,不僅可實現連續供冷,而且可大大提高系統COP。
熱波循環也是回熱利用的一種循環方式,是由Shelton[10]提出的。普通回熱循環中吸附床的溫度隨時間逐漸下降,同時解吸床的溫度逐漸上升,當兩床溫度達到同一溫度后,便無法繼續利用回熱而需采用外部熱源繼續解吸過程。Shelton認為,在吸附床中,如果能使床溫在與熱媒流動相垂直的方向上保持一致,而在熱媒流動方向上產生一陡坡(熱波),則能大大提高回熱效率。這一概念所描述回熱效率很高,但其實現尚有一定困難。
對流熱波循環是由Critoph[11]提出的,這種循環方式利用制冷劑氣體和吸附劑間的強制對流,采用高壓制冷劑蒸汽直接加熱、冷卻吸附劑而獲得較高的熱流密度。
根據吸附式系統的特點和溫度源的選擇,還可構筑多級和復疊循環制冷系統[2]。
從系統結構來看上述循環目前都是采用固定床方式實現的,因此在此有必要提及一種旋轉式吸附制冷系統,這種系統形式最早在20世紀80年代出現在美國的一些專利文獻中,但直到2000年左右才有比較系統的研究見諸報道[12,13]。這種系統結構采用旋轉方式使多個吸附制冷單元聯合運行,有效地利用了回熱,并在冷量輸出的連續性、穩定性和系統可控性等方面遠遠的優于以往的系統結構方式。
3吸附制冷技術在空調領域的應用前景
目前投入實用的吸附制冷系統主要集中在制冰和冷藏兩個方面,用于空調領域的實踐很少,只有少量在車輛和船舶上應用的報道。這主要是因為吸附制冷系統暫時尚無法很好的克服COP值偏低、制冷量相對較小、體積較大等固有的缺點,此外其冷量冷輸出的連續性、穩定性和可控性較差也使其目前不能滿足空調用冷的要求。趙加寧[14]提出在現有的技術水平下,可以結合冰蓄冷或作為常規冷源補充兩種方式將吸附制冷用于建筑空調。本文認為吸附制冷技術在空調領域的應用應立足于本身特殊的優勢,揚長避短,在特殊應用場合占據自己的位置。
吸附制冷與常規制冷方式相比,其最大的優勢在于利用太陽能和廢熱驅動,極少耗電,而與同樣使用熱量作為驅動力的吸收式制冷相比,吸附式制冷系統的良好抗震性又是吸收系統無法相比的。在太陽能或余熱充足的場合和電力比較貧乏的偏遠地區,吸附制冷具有良好的應用前景。
3.1可用于吸附制冷的熱力資源
我國太陽能資源很豐富,年平均日照量為5.9GJ/(m2·a)[14]。利用太陽能制冷是非常合理的,因為太陽能輻射最強的地區,通常是最需要能量制冷的地區,并且太陽輻射最強的時候也是最需要制冷的時候。
我國工業余熱資源的量很大,分布面很廣,溫度范圍也很寬,1990年的工業余熱統計數據[15]表明:我國工業余熱資源的回收率僅為33.5%,即2/3的余熱資源尚未被利用。
吸附制冷的良好抗震性使其在汽車和船舶等振動場合的應用成為可能。雖然吸收式制冷系統的工藝比較成熟,也可直接利用排氣廢熱,COP值相對于吸附式制冷來說也較高,但在車船這樣的運動平臺上,吸收式系統的溶液容易從發生器進入冷凝器以及從吸收器進入蒸發器,從而污染制冷劑以致不能正常運行。而吸附制冷系統結構簡單、可靠性高、運行維護費用低,能滿足車船的特殊要求。
常規汽車空調中使用的壓縮機要消耗大量的機械功,通常開動空調后,汽車發動機功率要降低10~12%,耗油量增加10~20%。汽車發動機的效率一般為35%~40%左右,約占燃料發熱量1/2以上的能量被發動機排氣及循環冷卻水帶走,其中排氣帶走的能量占燃料發熱量的30%以上,在高速大負荷時,汽車發動機排氣溫度都在400℃~500℃以上[16]。
船舶柴油機的熱效率一般只有30%~40%,約占燃料發熱量1/2的能量被柴油機的氣缸冷卻水及排氣等帶走。其中柴油機冷卻水溫度約為60℃~85℃,所帶走的熱量約占燃料總發熱量的25%;而柴油機排氣余熱的特點是溫度高,所帶走的熱量約占燃料總發熱量的35%[17]。
3.2吸附制冷系統自身的改進
吸附制冷系統能否最終在空調領域取得自己穩固的地位,最主要還要依靠吸附制冷系統自身性能的提高。在COP、單位質量吸附劑制冷量、單位時間制冷量的提高等研究方向上,許多研究者已取得了很多的成就并仍在辛勤的努力著。
此外,空調負荷對冷量的要求與制冰和冷藏系統不同,在實際中無論是建筑物還是車船的空調負荷都是動態變化的,這就要求冷源能夠及時響應空調系統的冷量要求,并且能夠保證連續的在一定時間內平穩供應冷量。吸附式制冷由于本身固有的特點,使其在試圖進行連續供冷時制冷量以波的形式出現。而且目前吸附式制冷系統運行的控制手段比較單一,公認的途徑有兩個:一是通過改變解吸階段的加熱速率以及吸附階段的冷卻速率來改變循環周期;二是強行改變等壓吸附時間,利用吸附過程中不同階段的吸附速度不同來調節冷量。由于吸附制冷系統的慢響應特性,這樣的控制手段無法使系統的冷量輸出滿足空調冷負荷經常變化的要求。冷量供應的連續性、穩定性和可控性可以統稱為冷量品質,目前這方面的研究尚未引起足夠的重視,如何有效地改善冷量品質是吸附制冷系統走向空調領域亟待解決的重要課題。
4結論
本文簡要介紹了吸附式制冷的基本原理,并從吸附工質對性能、吸附床傳熱傳質性能和系統循環幾個方面介紹了吸附制冷技術的研究概況。吸附制冷技術目前在空調領域的應用較少,本文認為吸附制冷憑借自身以太陽能和廢熱為驅動力、節能環保、運行可靠等優勢,將來很有希望在特殊場合的空調應用中找到自己穩固的立足點。
參考文獻
1.EHahre.Thermalenergystoragesomeviewsonsomeproblems.ProceedingConferenceHeatTransfer.1988:279~292
2.王如竹等.吸附式制冷.北京:機械工業出版社,2002
3.張學軍,施峰,曾言行.固體吸附工質對的研究.新能源,1998,20(1):27~31
4.崔群,陶剛,姚虎卿.固體吸附制冷吸附劑的研究進展.南京化工大學學報,1999,21(6):102~107.
5.王如竹,戴巍,周衡翔.吸附式制冷研究概況.低溫與特氣,1994,(4):1~7
6.張輝,滕毅,王如竹.吸附式制冷系統的傳熱傳質的簡化分析及吸附床的設計.低溫工程,1995,(6):43~48
7.MelkonTather.Theeffectsofthermalandmassdiffusivitiesontheperformanceofadsorptionheatpumpsemployingzeolitesynthesizedonmetalsupports.MicroporousandMesoporousMaterials,1999,28:195~203
8.TchernevDI,etal.Highefficiencyregenerativezeoliteheatpump.ASHRAETrans,1998,94:2024~2032
9.DoussN,MeunierFEandSunLM.Predictivemodelandexperimentalresultsforatwoadsorbersolidadsorptionheatpump.Ind.Eng.Chem.Res.,1988,27(2):310~316
10.SheltonSV,Analysisofthesolid/vaporheatpump.ASMEJournalofEnergyResourceTechnology.1990,112(3):69~78
11.CritophRE.Aforcedconvectionregenerativecycleusingthecarbon-ammoniapair.ProcoftheSymposium:SolidSorptionRefrigeration.Paris,1992,80~85
12.RECritoph.Simulationofacontinuousmultiple-bedregenerativeadsorptioncycle.InternationalJournalofRefrigeration,2001,24:428~437
13.JLlobet,VGoetz.Rotarysystemforthecontinuousproductionofcoldbysolid-gassorption:modelingandanalysisofenergyperformance.InternationalJournalofRefrigeration,2000,23:609~625
14.趙加寧,邱玉瑞.太陽能固體吸附式制冷技術在我國建筑中的應用.暖通空調,2001,31(6):32~34
15.中國動力工程學會工廠動力與節能分會.工業余熱利用技術政策研究報告.1993,7
(一)將課堂從實訓室搬到了工廠近些年制冷與冷藏技術專業一直與TCL空調器(武漢)有限公司合作,將綜合實習安排在該公司進行,使學生置身于企業實際環境中。整個實習過程以空調的生產工藝為主線,學生在整個生產過程中各司其職,更容易進入角色,進而主動思考,并對工作負責,通過半年的綜合實習學生掌握了家用空調的組裝工藝,同時更加鍛煉他們吃苦耐勞和溝通協調能力。
(二)校內老師和企業導師共同管理實習期間,校內老師由學校專業老師擔任,側重與專業知識、理論指導以及生活管理,企業導師由專業工程師和車間班組長擔任,側重于專業技能和實踐能力培養。企業導師在綜合實習期間是與學生“面對面”接觸機會最多的人,企業導師的作用不僅包含培養頂崗實習生的專業技能,而且還兼顧傳教實習基地所在企業的企業文化、專業技術人員的職業道德,同時幫助頂崗實習生融入項目管理團隊。企業導師對頂崗實習生的潛移默化作用很大,應該引起高度重視。
二、存在的問題
(一)學生的積極性不高由于受傳統教育觀念的影響,學生在學校大都是被動地接受教育,接收理論知識教育,老師也是“填鴨式”的教育,課堂安排學習什么內容學生就學什么,而在企業實習被安排在哪個崗位上工作就待在哪個崗位,,企業為了考慮生產效率,不愿意給學生換崗,所以學生大都是固定在一個崗位上,沒有機會輪崗換崗,不能按計劃學習各個崗位的技術技能,日久天長,工作枯燥無味,所以大多數學生在實習單位過程中表現都不夠積極主動。
(二)導師指導缺失雖然建立了校內導師和企業導師共同管理的制度,但是缺乏落實。校內導師只是在實習生遇到工作和生活難題的時候給與了幫助,對專業的指導較少。企業導師由于忙于企業的事情,對學生幾乎沒有起到指導作用,企業將推行導師制理解為簡單的幾天的生產工藝培訓和生產安全培訓,對后期學生的成長起不到太大的作用,歸根結地是缺乏長期有效的監督和管理。
(三)考核機制不完善目前主要是校內導師根據學生在企業的表現給出成績,對實習的評價是一種終結性的評價,缺乏過程評價、企業導師評價及同事評價。這在很大程度上影響了實習生積極性和主動性的充分發揮,從而影響了綜合實習的開展,導致綜合實習達不到理想的效果。
(四)企業缺乏關心學生學生在綜合實習期間,既是企業的員工,又是學校的學生,扮演著兩種角色,很多企業沒有認識到這一點,只是把學生當作廉價勞動力,比較注重短期利潤,不愿意用企業資源來培養學生,使得學生對在企業沒有歸宿感,對企業文化也沒有認同感。
三、幾點建議
(一)提高學生的積極性從實習的目的、實習的意義入手,讓學生轉變思想觀念,讓他們認識到工廠制冷與冷藏技術綜合實習是學校課堂的一個組成部分,不是在工廠車間簡單做事,只有在綜合實習實踐時把自己當作實習單位的員工,認真對待綜合實習的機會,全身心地進入工作狀態,接受并熟悉企業文化氛圍和職業崗位的需求,才能真正的把所學專業理論知識應用于實際的技能操作過程中,達到提高操作技能水平與實踐應用能力的目的。只有思想轉變,從心里認可實習的目的和意義,他們才能靜下心來在企業完成實習。企業多關心學生,讓學生認同企業文化,同時挑選綜合素質較高的人員做班組長,經常性地關心學生,多渠道的提高學生的工作積極性。
(二)加強“導師制”監督管理,制定相應的激勵措施導師制的初衷是好的,但是不落實等于零。這就要求學校和企業共同建立“導師制”監督管理和考核體系,從制度上約束和考核導師。只有讓校企雙方導師明確各自的權利和責任,才能有效加強學校企業雙方導師的合作,才能讓“導師制”這一培養模式在綜合實習中發揮積極作用,責任與權益同舉,出臺適當的激勵措施是必要的,企業和學校可各自對自己所管理的導師制定相應約束與激勵措施。
(三)改進考核方式,鞏固實習成果堅持學校、企業、學生共同評價的原則,作為一門綜合性實踐課程,綜合實習是學校、企業和學生共同參與的過程,綜合實習成績評價的主體應當是學校和企業,但必須認識到學生自我評價的價值和作用,將學校企業對實習的評價,與學生自我評價結合起來,最后評定出學生的實習成績,以有利于推動學生學習的積極性和提高綜合職業素質。
四、結束語
伴隨著科技水平的不斷的提升,工程機械也在不斷的適應不斷發展的科技水平提升自身的制造水平。空調制冷技術在機械工程中的應用范圍也在逐漸的擴大,但是工程機械空調系統作為一種特殊的空調系統,相對是比較復雜的。空調制冷技術在機械工程中的應用主要是通過壓縮、冷凝、節流和蒸發這四個工作環節的不斷的循環運行,從而保持蒸發器周邊溫度保持在一個響度比較穩定的低溫度的情況下,從而實現工程機械過程中的制冷的要求。
二、空調制冷技術在工程機械中的發展應用
空調制冷技術在工程機械中的應用發展經歷了5個階段,由功能簡單向功能齊全方向發展,而工程機械空調發展雖滯后于車用空調較多,但其發展歷程與汽車空調基本相同。單一供暖,該階段空調系統多為利用發動機冷卻液通過制熱芯體將水芯加熱,用鼓風機將被加熱空氣吹入駕駛室,給駕駛室的操作人員供暖。目前國內某些企業的工程機械產品依然在使用此種空調,主要用于售價較低的小型工程機械。單一制冷,單一制冷空調技術在二戰后得到運用,在1957年開始有了加裝單一制冷空調系統的轎車。但是此空調裝置無法調節溫度,目前基本被淘汰。當前使用的單一制冷空調,幾乎都為可調型。冷暖一體化,隨著空調技術的不斷發展,冷暖一體式空調第一次在汽車上實現應用,并且已經具備了基本的制冷、制熱、除霜、通風和過濾等功能,但是需要人員控制,工作量較大,可調溫性差。目前我國工程機械多數都在使用這種空調系統。自動溫控空調系統,該種空調系統雖冷暖一體,但需要手動調節溫度,增加了操作人員的工作量,控制效果也不是非常好,但是目前此方案還是得到了用戶的認可。這種空調系統需要事先將溫度設定好,系統會在事先設定的溫度范圍內自動工作,起到調節駕駛室內空氣的目的。目前,此方案被廣泛地應用于工程機械的空調系統中。
三、空調制冷技術在工程機械中的作用
通常,工程機械工作環境比較差,操作人員的操作環境也較差,尤其在潮濕、炎熱、粉塵大、寒冷的作業地區,空調的應用就顯得尤為重要。工程機械空調的最主要的功能是對駕駛室內空氣的濕度、溫度、氣流流速和清潔度等影響因數進行調節,使操作人員感到舒適,并去除擋風玻璃上的霧、霜、雪,保證操作人員身體健康和行車安全。具體功能有以下幾點:一是調節駕駛室內空氣的溫度。夏季降溫,冬季取暖并除霜、雪,潮濕季節除濕除霧。二是調節駕駛室內空氣的濕度。三是調節駕駛室內氣流流速。四是凈化駕駛室內空氣,提供潔凈新鮮空氣。五是實現駕駛室內增壓,阻止灰塵進入駕駛室。冷暖一體化,隨著空調技術的不斷發展,冷暖一體式空調第一次在汽車上實現應用,并且已經具備了基本的制冷、制熱、除霜、通風和過濾等功能,但是需要人員控制,工作量較大,可調溫性差。目前我國工程機械多數都在使用這種空調系統。自動溫控空調系統,該種空調系統雖冷暖一體,但需要手動調節溫度,增加了操作人員的工作量,控制效果也不是非常好,但是目前此方案還是得到了用戶的認可。這種空調系統需要事先將溫度設定好,系統會在事先設定的溫度范圍內自動工作,起到調節駕駛室內空氣的目的。目前,此方案被廣泛地應用于工程機械的空調系統中。
四、在工程機械空調各個部分的安裝
(一)壓縮機選型與安裝。壓縮機是空調系統中的最重要的部分,空調系統中的壓縮機主要由兩種類型,一種是控制排量壓縮機,一種是變排量壓縮機,無論是哪種類型的壓縮機都是有著將制冷劑進行運輸送制冷的作用。定排量壓縮機指的是根據發動機的轉速進行相應比例的轉動的調整。因此定排量壓縮機有一個弊端就是不能夠根據制冷的情況來改變自身的轉速,這樣的話會導致輸出的冷氣過于集中。在實際應用中如果是連續的運轉的話一般的轉速是保持在2200-2500轉/分鐘,如果是非連續性的運轉的話一般是保持在2800轉/分鐘。變排量壓縮機其自身的功率是自動根據制冷的需求進行自動調節的。變量壓縮機具有定排量的和變換排量的雙重的性質。在實際應用中,變排量壓縮機是轉速一般設定在2200轉/分鐘。
(二)制冷劑管路的布置。制冷劑管道主要是指蒸發器到壓縮機的這段管道距離,在進行管路設置的時候管路要盡量的小,并且管路的通道的直徑應該按照能承受的最小的眼里來進行設置。制冷劑管路的通道必須要保證與發動機的排氣管的隔離。
(三)空調安裝中要保證各個部分的穩固性。在機械工程中安裝所使用的空調的時候要盡可能的保證空調中的各個部件都是要穩定牢固,這樣能夠保證在機械工程中使用空調的時候的耐沖撞和震動性。
五、結語