時間:2023-03-16 16:26:40
序論:在您撰寫傳感器設計論文時,參考他人的優秀作品可以開闊視野,小編為您整理的7篇范文,希望這些建議能夠激發您的創作熱情,引導您走向新的創作高度。
本文工作中設計的便攜式電場傳感器標定裝置,其基本結構由兩個平行極板構成,標定裝置的下極板開有圓孔,并采用特殊夾具固定被檢電場傳感器。被檢電場傳感器的動片與標定裝置的下極板平齊,使得被檢電場傳感器無需進入標定裝置的上、下極板之間的空間,即可感應到其電場。
2電場傳感器標定裝置結構參數的優化設計分析
基于有限元的相關理論,首先對標定裝置的機械結構建立模型。黃色部分為標定裝置,藍色部分為電場傳感器。然后,對幾何模型進行單元剖分、加載,可求解出標定裝置兩極板間的電場分布情況。根據求得的電場分布情況,可進行標定裝置結構參數的設計。在計算求解過程中,改變加載在兩極板間的電壓,使兩極板間形成的電場強度的理論值始終為20kV/m。被標定的場磨式電場傳感器外殼直徑8cm,感應片直徑6cm,傳感器外殼與標定裝置的下極板接觸。
2.1標定裝置極板間距和極板直徑對電場的影響研究
在標定裝置的設計上,受限于被檢電場傳感器的尺寸,以及要考慮標定裝置的便攜性,把標定裝置的極板直徑L固定為16cm。在L固定的條件下,分析兩極板間距H對極板間電場強度的影響,并以此確定極板間距H。依照圖2所建立的模型,取H值分別為1cm,2cm,3cm,4cm和5cm,,。橫坐標是電場傳感器感應片距離標定裝置中心的橫向距離,單位為m;縱坐標是感應片某一位置處的電場強度,單位是V/m。同時,在感應片的敏感范圍(x<0.03m)內,電場強度并非恒定值,而是隨著與標定裝置中心距離的增加發生了畸變。圖6為極板間電場強度實際值的畸變情況。理想情況下,在感應片的敏感范圍內,電場強度應保持不變,但由于標定裝置中極板邊緣效應的存在,使得感應片敏感區域內的電場不是一個恒定值,距離電場傳感器的外殼越近,畸變程度越大。定義在感應片敏感范圍(x<0.03m)內各個位置處電場強度的平均值與理論值之比為電場強度的畸變率,并用該值來衡量電場強度的變化程度。畸變率越小,說明所產生的電場越接近均勻分布。綜上,在極板直徑固定為16cm時,極板間距為5cm時,電場強度的實際值與理論值最為接近,且在電場傳感器感應片感應區域內電場的畸變最小。同時,在保證H/L小于0.5的條件下,極板直徑L對實際電場的影響非常小。
2.2傳感器外殼與標定裝置的相對位置研究
當標定裝置與被檢電場傳感器配合不好時,容易使被檢電場傳感器相對于標定裝置發生傾斜。模型中,極板直徑為16cm,極板間距為1cm,傾斜角度為1.5°。標定裝置的傾斜,會對被檢電場傳感器感應片上方的電場分布造成較大影響。圖9是基于圖8的傾斜模型計算得到的感應片上方的電場強度的橫向分布。由于相對傾斜后,模型不再對稱,因此分析了整個感應片上方(-3cm~3cm)的電場強度的橫向分布,并將結果與沒有相對傾斜時的感應片上方電場分布作了比較。被檢電場傳感器與標定裝置在相對傾斜角為1.5°時的電場的畸變情況,比沒有相對傾斜時嚴重。有相對傾斜時,感應片上方電場分布更加不均勻,因而被檢電場傳感器與標定裝置間的相對傾斜會對標定結果產生較大影響。在標定裝置設計中,應使標定裝置與被檢電場傳感器的外殼的直徑盡可能接近(極限情況是外徑與孔徑的差值為零),以使得兩者緊密結觸,從而保證被檢電場傳感器與標定裝置之間不會發生相對傾斜。
3便攜式標定裝置的優化設計和實驗結果分析
當輸出為-3kV至+3KV的可調直流電源加在兩極板上時,兩極板間的電場強度理論值的范圍為-60kV/m~+60kV/m。使用在標準標定裝置中標定好的電場傳感器測量本文工作中所設計的便攜式標定裝置中的實際電場。實測電場強度與所加電源電壓之間有良好的線性關系,同時,實測電場小于理論電場,兩者的比值約為0.92,這與給出的仿真結果吻合。在野外的實際標定過程中,保持被檢電場傳感器與標定裝置的位置不變,使得電場強度理論值與實際值的比值保持不變,在此基礎上,可以通過加在兩極板間的電壓計算出電場強度的理論值,計算出電場強度的實際值。然后,通過電場強度實際值與被檢電場傳感器輸出值兩者間的關系,計算出被檢電場傳感器的靈敏度,實現對被檢電場傳感器的標定。經過較長時間的現場使用,所研發的便攜式標定裝置能夠方便、快捷地對場磨式電場傳感器進行校準。目前,該校準裝置已經應用于中國電力科學研究院特高壓直流實驗基地高壓直流輸電線路地面合成電場測量系統中,并已取得了良好的效果。
4結論
1.彈性元件的虛擬模型根據導體材料的應變電阻效應,電阻的相對變化與應變之間的關系。為了獲得電橋輸出與載荷的關系,需要構建彈性元件的數學模型。電阻式傳感器的彈性元件結構有圓筒式、柱環式、懸梁式和輪輻式四種基本類型,各種不同的結構型式的彈性元件應變ε與載荷F的關系如下所示。(1)柱筒式彈性元件其中E為彈性模量,A為橫截面積。(2)柱環式彈性元件其中R0為內環半徑,b為柱環寬度,h為柱環厚度,E為彈性模量。(3)懸梁式彈性元件其中l為有效長度,b為懸梁寬度,h為懸梁厚度,E為彈性模量。(4)輪輻式彈性元件其中b為輪輻條厚度,h為輪輻條寬度,G為剪切模量。將四種彈性元件類型設計在一個子VI中,通過操作“彈性元件類型”下拉列表進行選擇。
2.虛擬電橋模型電橋是目前常用的電阻式傳感器測量電路,整個電橋電路由四個橋臂組成,當橋臂接入應變電阻時則成為應變電橋。當有一個臂被接入應變電阻時,被稱為單臂電橋;兩個臂被接入應變電阻時則為雙臂電橋(也稱半橋);四個臂均被接入應變電阻時則稱為全橋。在橋路中均未接入應變電阻時。
3.電阻屬性和接橋方式設計前面板(如圖1所示)上電橋部分的電阻屬性分為固定電阻、應變電阻和平衡電阻三種,應變電阻的貼片方式分為受拉應力和受壓應力。(1)電阻屬性。圖1中的電阻R1的屬性只有兩種:應變電阻和固定電阻。該屬性通過操作“R1”設置開關進行選擇。若R1為應變電阻屬性,其阻值會隨載荷F的增減而產生相應的ΔR1以及因溫度變化產生的ΔR1t。電阻R2的屬性與R1相同。通過操作“R2”設置開關可以選擇R2的屬性。若R2作為應變電阻,則會隨載荷F的增減而產生相應的ΔR2以及因溫度變化產生的ΔR2t。若操作“差動設置”開關,則可使R2的受力方式為受壓應力,從而會隨載荷F的增減而產生相應的-ΔR2以及因溫度變化產生的ΔR2t。R3,R4需要參與調平電路的設計,因此接線也會相對復雜。通過操作“R3”和“R4”設置開關對該電阻進行屬性操作。圖中出現的Rr顯示框為調零電路中的R5的右半部分與R6串聯然后再與R3并聯后的阻值。Rl顯示框為R5的左半部分與R6串聯后再與R4并聯后的阻值。(2)接橋方式的設計。虛擬前面板上的電橋工作方式分別為:不工作、單臂工作,半橋工作和全電橋工作方式四大類型。對于半橋和全橋方式,其中應變片又分為差動和非差動兩種布片方式。不工作方式指的是R1,R2,R3和R4都設置成固定電阻。該方式無論怎樣施加外力,輸出始終為零。單臂工作時將R1設置為應變電阻,R2、R3、R4設置為固定電阻。此時,按“R1”按鈕,“R1”按鈕變綠,圖中應變電阻R1如果顯示向上的箭頭,表明該應變電阻受拉應力,對應電阻值增大;如果應變電阻R1顯示向下的箭頭,表明該應變電阻受壓應力,對應電阻值減小。半橋非差動工作時,R1、R2設置為應變電阻,R3、R4設置為固定電阻。按下“R1”、“R2”兩個按鈕,兩者均變綠表示接入工作臂,同時電阻R1、R2上的箭頭方向一致,表示應變片受到相同性質的應力,此時電橋輸出基本為零。半橋差動工作時,R1、R2設置為應變電阻,R3、R4設置為固定電阻。按下“R1”、“R2”兩個按鈕,兩者均變綠表示接入工作臂,同時電阻R1顯示向上箭頭,R2顯示向下的箭頭,表示對應的應變片受到拉應力和壓應力。全橋非差動工作時R1、R2、R3、R4屬性均為應變電阻,此時,按下“R1”、“R2”、“R3”、“R4”按鈕,均變為綠色。四個電阻上的箭頭方向一致,表明四個電阻受相同性質的應力,此時電橋輸出基本為零。全橋差動工作時,“R1”、“R3”電阻箭頭向上,表示受拉應力;“R2”“R4”箭頭向下,表示受壓應力。
4.溫度誤差計算及補償在討論應變計的工作特性時通常是以溫度恒定為前提的,但在實際應用過程中,工作溫度可能會發生變化,從而導致應變電阻的阻值發生變化。設工作溫度變化為Δt℃,則由此引起粘貼在試件上的應變電阻的相對變化為。將公式(11)代入公式(7)-(10),即可以計算出溫度變化時的電橋輸出,該輸出即為溫度誤差。單臂工作時,采用補償塊法進行溫度誤差補償,該方法利用兩塊參數相同的應變計R1、R2,R1貼于試件上并接入工作臂,R2貼于與試件材料相同溫度環境的補償塊上,但該補償塊不參與機械應變,同時接入電橋相鄰臂作為補償臂。當接通電源并施加負載時,補償臂產生的熱輸出與工作臂產生的熱輸出相同,則可達到溫度誤差補償的目的。對于半橋差動和全橋差動工作方式,根據公式(10)的和差特性即能進行溫度誤差補償。5.非線性誤差計算及補償公式(10)是對公式(9)進行線性化后的輸出。對于單臂工作時,非線性誤差可以通過在電路中加入補償臂(該臂不受外加應力作用)。對于半橋差動和全橋差動工作方式,不需要外接補償電路,因為差動工作方式具有很好的非線性補償作用。
二、虛擬操作面板的設計
用LabVIEW軟件開發虛擬儀器,用戶能“量身定制”儀器的操作面板。本實驗根據真實的電阻式傳感器實驗電路接線圖作為虛擬儀器的操作面板,能直觀地闡述電阻式傳感器實驗原理及操作方式,虛擬面板如圖1所示,主要包括虛擬彈性元件選擇、應變電阻布片方式選擇、電橋接法選擇、電橋調零模塊、差動放大模塊、直流電源模塊。此外前面板還包括電阻、外力、溫度的賦值等。
三、遠程虛擬實驗的演示步驟
電阻式傳感器實驗的遠程操作分別由DataSocket技術與Web網絡工具來實現。DataSocket技術以及網絡化技術的結合使虛擬儀器的遠程控制成為可能,可在若干計算機上對傳感器虛擬實驗進行操作及數據處理。這為傳感器虛擬實驗的互動教學提升了便捷性。電阻式傳感器虛擬實驗的遠程操作過程如下:第一步,打開服務器網頁。第二步,輸入R1、R2、R3、R4的阻值。第三步,選擇彈性元件類型。第四步,設置接橋和布片方式。第五步,打開電源開關。第六步,調節調零電位計,直至電橋近似達到初始平衡狀態。第七步,點擊“施力F”按鈕。第八步,查看客戶端網頁,查看電橋輸出曲線。第十步,點擊服務器面板中的“復位鍵”,使所有選項、開關及輸入數據均清零和初始化。第十一步,關閉電源開關。
四、結束語
1.1氣壓傳感器的結構設計
壓阻效應于1865年由LordKelvin首先發現,現在這個原理廣泛應用于傳感器原理中。當傳感器薄膜結構上的壓敏電阻受到外界壓力作用時會產生形變,使電阻率發生變化從而引起電信號的改變,這就是壓阻式壓力傳感器的工作原理。由此可見,壓敏電阻的變化與受到的壓力大小和壓阻系數有關。本文中的氣壓傳感器是基于硅的壓阻效應設計的,制備的氣壓傳感器芯片結構截面圖。傳感器結構由一個單晶硅彈性薄膜和集成在膜上的4個壓敏電阻組成,4個電阻形成了惠斯通電橋結構,當有氣壓作用在彈性膜上時電橋會產生一個與所施加壓力成線性比例關系的電壓輸出信號。
1.2氣壓傳感器制作工藝流程
整個流程主要是采用硅表面微加工工藝。與傳統的壓阻式壓力傳感器的加工方法相比,該工藝流程采用了外延單晶硅硅膜的工藝進行真空腔密封,這種方法可以克服傳統的濕法刻蝕工藝的缺點,加工出的單晶硅膜具有很好的機械性能。①首先,對硅襯底采用各向異性干法刻蝕,刻蝕出一道道約5μm深的淺槽。然后采用各向同性干法刻蝕,使淺槽下方形成一個連通的腔。②采用外延工藝,在襯底上進行單晶硅外延,并利用外延的硅材料將淺槽完全封住,從而在下面形成一個接近真空的密封腔。外延工藝如下:溫度為1135℃,采用的是H2,PH3等氣體,外延時的真空度為80torr。③在對外延硅層的局部區域進行小劑量硼離子注入。該部工藝主要是為了制作壓敏電阻,壓敏電阻主要位于膜四邊的中央。④對局部區域進行大劑量硼離子注入。該步工藝主要是要實現壓敏電阻條之間的歐姆連接,并為壓敏電阻的引出做準備。⑤在硅片表面生長一層氧化層及氮化層,用作絕緣介質層。⑥對氧化層和氮化層光刻并圖形化,形成接觸孔。⑦濺射金屬層并光刻圖形化,形成引線及壓焊塊。
2測試電路設計
此壓阻式氣壓傳感器,壓敏電阻初始電阻值為163Ω,滿量程輸出電阻變化最大為9Ω,針對此微小阻值變化量,本文中設計了一款專用接口測試電路。該測試電路主要包括STM32系列單片機及ADS1247模/數轉換模塊和液晶顯示模塊。電路應用時將惠斯通電橋輸出節點與測試電路連接起來,通過硬件和軟件的結合實現外界氣壓信號的檢測并轉化為數字電信號進行輸出,讀數在LCD顯示屏上進行顯示,測試電路板的說明如圖4所示,針對部分重要模塊的電路設計在下文說明。
2.1電源電路設計
測試系統中需要用到3.3V和5V兩種電壓(選用的STM32單片機規定工作電壓為2.0V~3.6V,ADS1247數/模轉換模塊模擬電源部分供電電壓為5V),根據測試電路元件的需求,采用國產LM2940-5和LM1117-3.3兩個穩壓模塊來進行電源供電的設計。
2.2ADS1247模/數轉換電路設計
ADS1247是TI公司推出的一種高性能、高精度的24位模擬數字轉換器。ADS1247單片集成一個單周期低通數字濾波器和一個內部時鐘、一個精密(ΔΣ)ADC與一個單周期低通數字濾波器和一個內部時鐘。內置10mA低漂移電源參考和兩個可編程電流型數字模擬轉換器(DAC)。通過程序設置,在輸出電壓裕度內,DACS可為外部提供多種強度的電流,分別為50μA、100μA、250μA、500μA、750μA、1000μA、1500μA。除此之外,ADS1247還具有一個可編程放大器(PGA),放大倍數可設置為1倍、2倍、4倍、8倍、16倍、32倍、64倍、128倍。
3氣壓傳感器性能測試分析
氣壓傳感器作為一種高空探測的工具,它的性能好壞直接影響到高空探測的準確性,針對本傳感器結構進行測試并從數據中對氣壓傳感器的靈敏度、線性度、測試精度進行了分析及擬合修正。
4結束與討論
關鍵詞:微機電系統(MEMS)微機械陀螺(MMG)檢測
隨著科學技術的發展,許多新的科學領域相繼涌現,其中微米/納米技術就是諸多領域中引人注目的一項前沿技術。20世紀90年代以來,繼微米/納米技術成功應用于大規模集成電路制作后,以集成電路工藝和微機械加工工藝為基礎的各種微傳感器和微機電系統(MEMS)脫穎而出,平均年增長率達到30%。微機械陀螺是其中的一個重要組成部分。目前,世界各個先進工業國家都十分重視對MMG的研究及開發,投入了大量人力物力,低精度的產品已經問世,正在向高精度發展。
1微機械振動陀螺儀的簡要工作原理
陀螺系統組成見圖1,它由敏感元件、驅動電路、檢測電路和力反饋電路等組成。在梳狀靜電驅動器的差動電路上分別施加帶有直流偏置但相位相反的交流電壓,由于交變的靜電驅動力矩的作用,質量片在平行于襯底的平面內產生繞驅動軸Z軸的簡諧角振動。當在振動平面內沿垂直于檢測軸的方向(X方向)有空間角速度Ω輸入時,在哥氏力的作用下,檢測質量片便繞檢測軸(Y軸)上下振動。這種振動幅度非常小,可以由位于質量片下方、淀積在襯底上的電容極板檢測,并通過電荷放大器、相敏檢波電路和解調電路進行處理,得到與空間角速度成正比的電壓信號。
在科研及加工過程中,一個重要的內容就是檢測陀螺儀的特性,如工作狀態諧振頻率、帶寬增益、Q值等,于是就提出了微機械慣性傳感器檢測平臺的研制任務。根據陀螺儀的工作原理,整個儀器包括兩大部分:驅動信號發生部分和表頭的輸出信號檢測部分。驅動信號發生部分對待測的慣性傳感器給予適當的驅勸信號,使傳感器處于工作狀態。信號檢測部分要求檢測出微小電容變化,經過放大、解調處理后,將模擬量轉換成數字量采集到PC機中,分析輸出信號,以確定慣性表的特性。
2微電容檢測技術
在MMG檢測技術中,利用電容傳感器敏感試驗質量片在哥氏力作用下的振動角位移,獲取輸入角速率信號。由于陀螺儀的尺寸微小,為了得到10°/h的中等精度,要求電容測量分辨率達到(0.01×10-15)~(1×10-18)法拉。因此,對于微機械加速度計和向機械陀螺儀來說,檢測試驗質量和基片之間的電容變化是一個關鍵技術。目前在MMG中采用的微電容檢測方案有三種:開關電容前在MMG中采用的微電容檢測方案有三種:開關電容電路、單位增益放大電路和電荷放大電路。
2.1開關電容電路
其基本原理是利用電容的充放電將未知電容變化轉換為電壓輸出。該測量電路包括一個電荷放大器、一個采樣保持電路以及控制開關的時序,如圖2所示。
在測量過程中,先將未知電容(C1、C2)充電至已知電壓Vref,然后讓其放電。充、放電過程由一定時序控制,不斷重復,使未知電容總處于動態的充放電過程。C1、C2連續地放電,電流脈沖經過電荷放大器轉換為電壓。再經過采樣保持器,得到輸出Vc。將公式ΔC=2C0·x/d0代入,可得電容檢測電路的傳遞函數為:
Vc/x=-[2VrefC0/Cfd0]
2.2單位增益放大器電路
AD公司與U.C.Berkeley聯合開發的ADXL50(5g的微機械加速度計)采用了單位增益放大電路。
圖3是單位增益放大器的等效電路。圖3中,Cp為分布電容,Cgs為前置級輸入電容,Rgs為輸入電阻。當載波頻率在放大器的通頻帶以內時,前置級輸入電阻可忽略不計。由圖3可午,前置級有用信號輸出為:
(Vs-Vout)jω(C0+ΔC)+(-Vs-Vout)jω(C0-ΔC)
=Voutjω(Cp+Cgs)+Vout/Rgs
Rgs∞
Vout=(2ΔC/2C0+Cp+Cgs)Vs
分布電容Cp約為10pF,
輸入電容Cgs約為1~10pF,一般都大于傳感器標稱電容C0(1pF左右)??梢钥闯?,它們的存在都極大地降低了電容檢測靈敏度。要提高電路靈敏度,就必須消除Cp、Cgs的影響,通常采用的措施等電位屏蔽。
2.3電荷放大器電路
電荷放大器電路如圖4所示。它采用具有低輸入阻抗的反相輸入運算放大器。其中Cp表示分布電容,Cf為標準反饋電容,Rf用來為放大器提供直流通道,保持電路正常工作。應選取Rf,使時間常數RfCf遠大于載波周期,以避免輸出波形畸變。但Rf過大為今后電路集成帶來不便。可以使用小阻值的電阻組成T型網絡,替代大阻值電阻。
若運算放大器具有足夠的開環增益,反相輸入端為很好的虛地,那么,兩輸入端點之間的電位差為零。因此,反相輸入端對地的分布電容Cp和放大器的輸入電容Cgs對電路測量不會造成影響。電荷放大電路相對于單位增益放大電路來說,結構要簡單,不需考慮等電位屏蔽問題;只需將雜散電容的影響轉化為對地的分布電容,即進行合理的對地屏蔽,就能獲得較好的效果。
盡管在電荷放大電路中,可以忽略掉輸入電容及反相輸入端對地的分布電容,但是在檢測微小電容變化時,輸出還是有很大的衰。這是由放大器輸入輸出端分布電容Cio造成的。當載波電壓頻率大于1/(2πRfCf)和小于放大器的截止頻率時,輸出電壓Vout應該表示為:
Vout=-[(C1-C2)/(Cio+Cf)]Vs=-[(2ΔC)/Cio+Cf]]Vs
3檢測平臺的系統構成及工作原理
該系統的工作原理如圖5所示。對慣性傳感器施以適當的激勵信號后,傳感器的動片即處于振動狀態,上下極板間的電容發生周期變化,采用電荷放大器電路將該信號提取出來,經交流放大、解調后通過A/D轉換變成數字量采集到微機中,觀察傳感器的輸出響應,為下一步利用軟件方法分析微機械慣性傳感器的時域、頻域特性打下基礎。
3.1激勵信號發生器
根據微機械輪式振動陀螺儀的工作原理,最多需要4路激勵信號。激勵信號為正弦波,每兩路相位相反。為了測量陀螺儀的頻率特性,需要不斷改變激勵信號的頻率。目前不同設計的陀螺儀諧振頻率在幾百赫茲到10千赫茲之間,激勵信號也需要在這個范圍內進行調節。另外,陀螺儀的驅動力矩等于驅動信號的交流分量與直流分量的乘積,所以還要施加正或負的直流偏置,使陀螺能處于正常工作狀態。交流相位和直流偏置組合見表1。
表1交流相位和直流偏置組合
直流偏置:++--交流信號:+-+-
一般的RC振蕩電路生成的正弦波頻率靠改變R、C值來調節,不能連續大范圍調節。所以,設計中采用數字方法合成模擬波形,其原理見圖6。圖6中8254為軟件可編程計數器。其包含3個獨立的16位計數器,計數最高頻率可達8MHz,設計中輸入3MHz的時鐘,將2個計數器串連使用,這樣可以增加頻率控制范圍。8254產生的方波信號作為后面并行計數器的計數脈沖輸入。并行計數器由2片74LS161組成8位二進制循環計數器。74LS161計數到最大值時會自動清零,重新開始計數,其輸出可作為E2PROM2817A的地址信號(即每個正弦周期內采樣點數為256個)。2817A的數據讀取時間為150ns。設計電路時將它的片選和讀信號均設為有效,以提高數據讀取速度。D/A轉換采用DAC-08電流輸出型D/A轉換器。電路輸出時間85ns,放大器采用高速高精度運放OP-37,同理,D/A轉換器的片選和轉換開始信號總為有效,其輸出跟隨輸入變化,提高轉換速度。實驗結果表明,此信號發生器完全可以生成10kHz以內可調頻的正弦波。而且使用可編程計數器8254,輸出正弦波的頻率可以用軟件方法調節。如果想輸出非正弦波形,只要修改E2PROM的數據,就可以輸出任意形狀的周期波形。
3.2低通跟蹤濾波器
數字信號發生器具有控制靈活的優點,但是輸出信號不夠平滑,其中會有臺階波。在對信號要求比較高的場合,還需要進行濾波。本設計中信號的頻率變化范圍很大:幾百赫茲到10千赫茲。為了進一步提高信號質量,采用AD633模擬乘法器構成低通跟蹤濾波器,其原理如圖7。
通帶的截止頻率是由電壓Ec控制的,輸出是OUTPUTA,截止頻率:
fc=Ec/[(20V)πRC]
OUTPUTB處是乘法器的直接輸出端,截止頻率與RC濾波器相同:
f1=1/(2πRC)
這種濾波器結構簡單,沒有開關電容,噪聲小,一般采用數模轉換器控制Ec,控制通帶頻率也比較容易。
3.3交流放大器
微機械慣性傳感器在施加激勵信號后,即處于振動狀態。傳感器有差動微電容量變化C0+ΔC和C0-
ΔC。采用電荷放大器電路提取出ΔC,此電壓信號仍然很彈,需要進一步放大處理,于是采用圖8所示的交流放大器。
交流放大器由4個放大倍數為-1、-2、-5、-10的運算放大器級聯組成,進一步放大被測信號,同時調整幅值以便適應解調器的輸入。圖8中的開關選用ADG211模擬開關,通過控制模擬開關的開合,可以任意選擇某級或某幾級放大器參加工作,實現對放大倍數正負1、2、5、10、20、50、100的整倍數調整。例如,將模擬開關S0、S2、S8、S13閉合,其他開關全部打開,交流放大器的總放大器數即為:(-1)×(-2)×(-10)=-20。
3.4數據采集系統
使用計算機總線,與外設之間必須有接口。本系統采用雙端口RAM作為數據緩存。先將信號采樣并存儲其中,然后成組地向主機傳送,從而有效地發揮了主、從、資源的效率,且設計也相對簡單。
3.4.1系統工作原理
系統基本組成原理如圖9。主要有雙端口RAM、邏輯控制模塊、A/D轉換器組、計算機接口。機通過接口啟動邏輯控制模塊后,CPU資源向其他請求開放,邏輯控制模塊發控制信號啟動A/D轉換器并進行采樣,并將轉換結果存入雙端口RAM。當RAM中的數據達到一定數量時,邏輯控制模塊向計算機發出中斷請求。主機接到請求后進入中斷服務程序,向邏輯控制模塊發出命令,決定是否繼續采樣,并將RAM內的數據讀入內存。
3.4.2硬件設計
本設計使用Cypress公司的CY7C136(2k×8bit)雙端口RAM。其兩個端口都有獨立的控制信號、片選CE、輸出允許OE和讀寫控制R/W。這組控制信號使得兩個端口可以像獨立的存儲器一樣使用。使用這種器件要注意當兩個端口訪問同一個單元時,有可能導致數據讀出結果不正確。解決這個問題的方法有兩個:一種是監測busy信號輸出,當檢測到busy信號有效,就使訪問周期拉長,這是從硬件上解決;另一種方法是軟件上保證兩個端口不同時訪問一個單元,即將雙端口RAM進行分塊。本系統采用后者,將busy信號輸出通過上拉電阻接到電源正極。
在系統中,邏輯控制模塊的作用非同小可,是控制采樣、存儲、與計算機接口的核心。本系統為方便對采樣速率等參數進行設置,在該模塊中采用了MCS-51單片機。這樣可以通過編程設定采樣速率。
與主機的信息交換包括:
(1)接收主機控制信號,以決定是否開始采樣;
(2)在存儲區滿后,向主機發中斷請求。
本系統使用AT89C51的地址總線來選通RAM的存儲單元,對其進行寫操作,將采樣結果存入相應的單元。
3.4.3軟件設計
系統軟件包括主機程序和邏輯控制模塊中89C51程序。軟件的關鍵是單片機控制A/D轉換器和存儲器部分,軟件流程見圖10。
藍牙技術為藍牙特別興趣小組(SIG,SpecialInterestGroup)在1998年提出。它是一種新的短距離無線通信協議,是一種無線數據與語音通信的開放標準,目的是以無線的方式取代現有的有線接口。其優勢在于:具有很強的移植性,可應用于多種通信場合;硬件集成應用簡單,成本低廉,實現容易,而且易于推廣;藍牙功耗低,對人體危害??;采用擴頻跳頻技術,抗干擾能力強,增加了信息傳輸的安全性。藍牙系統支持點對點和一點對多點的通信。在一點對多瞇的連接方式中,多個藍牙單元共享一條信道,采用同一跳頻序列。各個藍牙設備構成的網絡稱為匹克網(Piconet)。匹克網中藍牙設備以主從方式實現通信。由于藍牙設備的物理尋址地址為3位,因此在同一時刻,匹克網最多只能激活8位設備(1主7從);但不同時刻,多個匹克網可以構成一個可重疊的散射網絡結構。藍牙通信的有效半徑和其輸出的功率有關:當輸出功率是2類(2.5mW/4dB)時,通信范圍為15m;如果增加其功率到1類(4mW/20dB)時,就能使通信范圍達到100m。
2基本標準和協議的傳感器結構模型
基于IEEE1451.5和藍牙協議的無線網絡化傳感器由STIM、藍牙模塊和NCAP三部分組成,其體系結構如圖1所示。此方案的實現,相當于在IEEE1451.2的結構模型上取代了原有的TII接口。采用無線的藍牙協議實現連接,類似于實現了一個無線的STIM和無線NCAP接收終端的模式。通過在原有的STIM和NCAP中嵌入了藍牙模塊,構成的無線NCAP和無線STIM,以點對多點在藍牙匹克網以主從方式實現相互通信。
與典型的有線方式相比,上述無線網絡模型增加了兩個藍牙模塊。對于藍牙模塊部分標準的藍牙對外接口電路一般使用RS232或USB接口,而TII是一個控制鏈接到它的STIM的串行接口。因此,必須設計一個類似于TII接口的藍牙電路,構造一個專門的處理器來完成控制STIM和轉換數據到藍牙主控制接口HCI(HostControlInterface)的功能。
3藍虎無線抄表傳感器的設計
基于上述無線傳感器結構模型給出的無線抄表傳感器的結構原理,如圖2所示。整個傳感器核心部件是實現數據采集的前端STIM部分和實現網絡接口的NCAP部分。STIM完成數據的采集和處理(濾波、校準等),NCAP完成傳感器的網絡接口,實現對PSTN電話互網連。STIM和NCAP之間用藍牙無線接口連接。STIM選用8位處理器實現,而NCAP的網絡接口通過8位的處理器和內嵌Modem的形式實現。
(1)NCAP部分硬件設計
抄表傳感器NCAP硬件部分選用的處理器、藍牙模塊和內置Modem分別是Winbond公司的W78E58處理器、Erricsson公司ROM101008系列藍牙模塊以及OKI公司的調制解調芯片MSM7512B。
圖3
由于系統中藍牙模塊接口采用的是RS232串口,同時處理器和內置Modem的通信接口也要用到RS232串口,因此我們選用W78E58處理器。該處理器具有雙串口。ROK101008系列藍牙模塊遵從藍牙1.1規范,是一個點對多點的通信模塊。該模塊可以同時和在其范圍內被連接的7個藍牙從設備實現數據傳輸。MSM7512B為OKI公司推出的FSK模式調制解調器芯片,通過設置引腳MOD2和MOD1選擇四種工作模式的一種。MT8888C作為DTMF接收器時,DTMF信號從IN+和IN-輸入,一旦信息被寫入到接收寄存器中,MT8888C將置位狀態豁口中接收寄存器滿標志位和IRQ/CP端電平來通知控制器準備接收數據;MT8888C作為DTMF發送器時,數據被寫入發送寄存器,經內部轉換合成DTMF信號從TONE端輸出。本處采用中斷方式檢測DTMF振鈴信號。圖3為藍牙抄表傳感器NCAP部分的硬件電路原理。
(2)抄表傳感器NCAP部分軟件設計
抄表傳感器NCAP部分的軟件設計,主要是在單片機上完成兩部分功能的程序編制:一是初始化藍牙模塊,使抄表傳感器NCAP部分上主設備模塊和所有范圍內的從設備模塊建立連接;二是驅動MSM7512B和MT8888C工作,實現與PSTN的連接。
①藍牙模塊初始化。參照008藍牙模塊的工作方式,即通過單片機向藍牙模塊發送HCI(HostContr
olerInterface)分組。HCI指令包括指令分組、數據分組和事件分組。具體格式為:操作碼+參數總長+參數0+……+參數N。
如下給出主、從設備間實現ACL數據連接的HCI指令(字符對應相應指令的操作碼,由前10位和后6位兩部分組成,括弧內為該指令的參數):從設備上電后實現查詢使能進行復位Write_scan_enable(0x3)。主設備發送查詢HCI指令Inquiry(0x9c8b33,8,0),假定從設備的地址為0x000000000000,則建立ACI連接的HCI指令為Creat_Connection(0x000000000000,0xcc18,0,0,0,0)。從設備接收連接請求指令為Accept_connection_request(0x111111111111,0),假定主設備的地址為0x111111111111。這樣主從設備之間即建立了ACL數據連接。其中Inquiry對應的操作碼為:0x0001,0x01。具體指令參見藍牙規范。②初始化MSM7512B和MT8888C。首先使能MSM7512B,選擇模式1。值得注意的是,復位MT8888C時,必須將上電后延時100ms。具體復位方式參見MT8888C數據手冊。
如下給出單片機的初始化程序及外部中斷0的服務程序。
/*初始化程序*/
TCON=0x40H;//Timer1使能
TMOD=0x20H;//Timer1為定時器,8位自動重裝TH1到TL1
CKCON=0x30H;//Timer1和Timer2時鐘為1/12CLOCK
SCON=0x50H//串口0模式1,波特率由Timer2決定
IE=0xD1H;//使能中斷(串口1和串口2以及INT0)
SCON1=0x50H;//串口1模式1,波特率由Timer1決定
T2CON=0x34H;//Timer2自動重裝RCAP2L到TL2,RCAP2H到T2H
WDCON=0x02H//Watchdog復位使能
TL1=0xFDH;TH1=0xFDH;TL2=0xFDH;TH2=0x00H;
RCAP2L=0xFAH;RCAP2H=0x00H;
/*初始值設置,設置串口1和串口2的波特率為9600bps*/
Init_008();//初始化藍牙模塊
Reset_mt8888c();//復位MT8888C
P1^0=1;P0=0x00H;//使能MSM7512,選擇模式1
/*外部中斷0的服務程序*/
voidservice_int0()interrupt0
{SendRecord();//傳送監測記錄……}
(3)STIM的設計
大多數傳大吃一驚器的STIM部分設計相對簡單,因為電表數據采集的功能比較單一。圖4為STIM數據采集部分的原理框圖。
硬件設計時,電表數據采集部分和傳統的有線方式一樣,只是硬件上增加了藍牙模塊作為和上層藍牙傳感器NCAP的無線接口。數據采集部分經光電轉換后的數字脈沖接到單片機的計數器口,實現計數,然后將必要的電表數據量送至藍牙模塊。單片機遷移家長普通的8031即可,模塊選用的是ROK101008系列。軟件上除了要注單片機上完成數據采集的部分程序外,上電時還應該初媽嘩藍牙模塊,使模塊能夠在其有效范圍被搜索連接。數據采集部分程序主要是實現對計數器的計數,同時轉換成電表參量,然后徑藍牙模塊送到NCAP。
4基于藍牙抄表傳感器的抄表系統
關鍵詞:測力傳感器,應力集中,精度,靈敏度
一、概述
對于電阻應變片式測力傳感器(以下簡稱“測力傳感器”)來說,彈性體的結構形狀與相關尺寸對測力傳感器性能的影響極大??梢哉f,測力傳感器的性能主要取決于其彈性體的形狀及相關尺寸。如果測力傳感器的彈性體設計不合理,無論彈性體的加工精度多高、粘貼的電阻應變片的品質多好,測力傳感器都難以達到較高的測力性能。因此,在測力傳感器的設計過程中,對彈性體進行合理的設計至關重要。
彈性體的設計基本屬于機械結構設計的范圍,但因測力性能的需要,其結構上與普通的機械零件和構件有所不同。一般說來,普通的機械零件和構件只須滿足在足夠大的安全系數下的強度和剛度即可,對在受力條件下零件或構件上的應力分布情況不必嚴格要求。然而,對于彈性體來說,除了需要滿足機械強度和剛度要求以外,必須保證彈性體上粘貼電阻應變片部位(以下簡稱“貼片部位”)的應力(應變)與彈性體承受的載荷(被測力)保持嚴格的對應關系;同時,為了提高測力傳感器測力的靈敏度,還應使貼片部位達到較高的應力(應變)水平。
由此可見,在彈性體的設計過程中必須滿足以下兩項要求:
(1)貼片部位的應力(應變)應與被測力保持嚴格的對應關系;
(2)貼片部位應具有較高的應力(應變)水平。
為了滿足上述兩項要求,在測力傳感器的彈性體設計方面,經常應用“應力集中”的設計原則,確保貼片部位的應力(應變)水平較高,并與被測力保持嚴格的對應關系,以提高所設計測力傳感器的測力靈敏度和測力精度。
二、改善應力(應變)不規則分布的“應力集中”原則
在機械零件或構件的設計過程中,通常認為應力(應變)在零件或構件上是規則分布的,如果零件或構件的截面形狀不發生變化,不必考慮應力(應變)分布不規則的問題。其實,在機械零件或構件的設計中,對于應力(應變)不規則分布的問題并非不予考慮,而是通過強度計算中的安全系數將其包容在內了。
對于測力傳感器來說,它是通過電阻應變片測量彈性體上貼片部位的應變來測量被測力的大小。若要保證貼片部位的應力(應變)與被測力保持嚴格的對應關系,實際上就是保證在測力傳感器受力時,彈性體上貼片部位的應力(應變)要按照某一規律分布。在實際應用中,對于彈性體貼片部位應力(應變)分布影響較大的因素主要是彈性體受力條件的變化。
彈性體受力條件的變化是指當彈性體受力的大小不變時,力的作用點發生變化或彈性體與其相鄰的加載構件和承載構件的接觸條件發生變化。如果在彈性體結構設計時,未能考慮這一情況,就可能造成彈性體上應力(應變)分布的不規則變化。這方面最典型的實例是筒式測力傳感器(見圖1)。
當筒式測力傳感器上、下端面均勻受力時,在彈性體貼片部位的整個圓周上應力(應變)的分布是均勻的。當上、下兩個端面上受力情況發生變化后,力在兩個端面的作用情況不再是均勻分布的,這時彈性體貼片部位圓周上應力(應變)的分布情況就難以預料了。如果筒式測力傳感器彈性體的高度與直徑之比足夠大,彈性體貼片部位圓周上的應力(應變)基本上還是均勻分布。但是,在實際應用中,通常很少能為測力傳感器提供較大的安裝空間位置,因而筒式測力傳感器彈性體的高度與直徑之比很難做到足夠大,彈性體貼片部位圓周上應力(應變)將不均勻分布,而且不均勻分布的情況隨彈性體受力情況的變化而改變。在這樣的條件下,彈性體貼片部位的應力(應變)與被測力不能保持嚴格的對應關系,將造成明顯的測力誤差。
為了減小由于彈性體受力條件的變化引起的測力誤差,有些傳感器設計者采取在筒式測力傳感器彈性體上增加貼片數量的方法,盡可能將彈性體上貼片部位圓周上應力(應變)分布不均勻的情況測量出來。這樣的處理方法有一定的效果,可以減小彈性體受力條件的變化引起的測力誤差。但這種方法畢竟是一種被動的方法,增加的貼片數量總是有限的,還是很難把彈性體上貼片部位圓周上應力(應變)分布不均勻的情況全部測量出來,測力誤差減小的程度不夠顯著。
由于彈性體受力條件的變化引起的測力誤差的實質是彈性體貼片部位圓周上的應力(應變)的不規則分布,如果能使彈性體貼片部位圓周上的應力(應變)分布受到一定條件的約束,迫使貼片部位的應力(應變)按照某一規律分布,因而使得彈性體貼片部位的應力(應變)與被測力基本保持嚴格的對應關系,由此來減小因彈性體受力條件的變化引起的測力誤差。
對于筒式測力傳感器來說,在承載強度足夠的條件下,如果將彈性體貼片部位圓周上不貼片的部位挖空(見圖2),使得應力只能在未挖空的部位分布,大大改善了應力(應變)不規則分布的情況?;蛘哒f,應力(應變)的不規則分布僅僅限于未挖空的部位,并且其不規則分布的程度不會很大。因此,在未挖空的部位粘貼電阻應變片,就能使測得的應力(應變)與被測力基本保持嚴格的對應關系。
上述處理方法實際上出于這樣一個原理:通過某種措施,使彈性體上的應力(應變)集中分布在便于貼片檢測的部位,實現測得的應力(應變)與被測力基本保持嚴格的對應關系,以保證傳感器的測力精度。
作者曾用上述方法對筒式測力傳感器進行改進。改進前的普通筒式傳感器測力誤差大于1%F.S.,改進后(局部挖空)的筒式傳感器測力誤差為0.1~0.3%F.S.,測力精度明顯提高。
三、提高應力(應變)水平的應力集中原則
若要測力傳感器達到較高的靈敏度,通常應該使電阻應變片有較高的應變水平,即在彈性體上貼片部位應該有較高的應力(應變)水平。
實現彈性體上貼片部位達到較高應力(應變)水平有兩種常用的方法:
(1)整體減小彈性體的尺寸,全面提高彈性體上的應力(應變)水平;
(2)在貼片部位附近對彈性體進行局部削弱,使貼片部位局部應力(應變)水平提高,而彈性體其它部位的應力(應變)水平基本不變。
以上兩種方法都可以提高貼片部位的應力(應變)水平,但對彈性體整體性能而言,局部削弱彈性體的效果要遠好于整體減小彈性體尺寸。因為局部削弱彈性體既能提高貼片部位的應力(應變)水平,又使得彈性體整體保持較高的強度和剛度,有利于提高傳感器的性能和使用效果。
局部削弱彈性體提高貼片部位應力(應變)水平的原理是:通過局部削弱彈性體,造成局部的應力集中,使得應力集中部位的應力(應變)水平明顯高于彈性體其它部位的應力水平,將電阻應變片粘貼于應力集中部位,就可以測得較高的應變水平。
局部應力(應變)集中的方法在測力傳感器的設計中經常被采用,尤其在梁式測力傳感器(如彎曲梁式和剪切梁式測力傳感器)的彈性體設計中被廣泛應用。局部應力(應變)集中方法應用較為成功的當數剪切梁式測力傳感器。剪切梁式測力傳感器是通過檢測梁式彈性體上的剪應力(剪應變)實現測力的,其彈性體的結構如圖3所示(為了便于說明問題,這里僅以一簡支梁式的彈性體為例)。
由材料力學中有關梁的應力分布知識可知,當梁承受橫向(彎曲)載荷時,在梁的中性層處剪應力(剪應變)最大。如果要檢測梁上的剪應變,應該在梁的中性層處貼片。為了提高貼片處的剪應力(剪應變)水平,可將彈性體兩側各挖一個盲孔(見圖3的2處),盲孔的中心應在中性層處。電阻應變片應該粘貼在盲孔的底面上,即圖3中工字形斷面(A-A剖面)的腹板上。
對于梁形構件來說,其彎曲強度是主要矛盾。在一個梁滿足彎曲強度的情況下,剪切強度一般裕量較大。當在中性層附近挖盲孔后,該截面上腹板上的剪應力(剪應變)明顯提高,然而該截面上的彎曲應力提高很小。因此,剪切梁式彈性體應用局部應力集中方案后,被檢測的剪應變大大提高,使該測力傳感器的靈敏度顯著提高,而對整個梁的彎曲強度影響很小,使整個梁保持了良好的強度和剛度。
四、小結
在測力傳感器的設計過程中,如能自覺地按照上述兩種應力集中的原則,對彈性體進行結構設計,就能夠收到提高測力傳感器的測力精度和測力靈敏度的良好效果。靈活、恰當地運用應力集中的原則,對于設計和生產高性能的測力傳感器具有重要的實用意義。
參考文獻
[1].劉鴻文主編,《材料力學》,高等教育出版社,1979年
PrinciplesofConcentratingStressintheDesignofLoadCells
Abstract:Thispaperintroducestwoprinciplesofconcentratingstress,whichareusually
usedinthedesignofloadcells.Accordingtotheprinciplestheelasticbodiesofloadcells
1.1傳感器激勵的設計硅壓阻式壓力傳感器內部結構為惠斯通電橋結構,可在恒壓或者恒流模式下工作。由于硅壓阻式傳感器很容易受到溫度的影響產生漂移,在恒壓模式下隨著溫度的變化,傳感器本身電阻R的變化會對信號產生影響,因此,選擇恒流源作為傳感器的激勵[6]。傳感器激勵源的穩定與噪聲大小直接影響著壓力敏感元件的輸出,因此,在確保低溫漂、低噪聲、驅動能力強的選型原則下,選擇ADR4525基準源、AD8506運放構建驅動電路以及反饋電路。圖2所示為傳感器激勵原理框圖。
1.2溫度補償電路的設計溫度補償電路用于對溫度發生變化時,敏感元件和構成信號調理電路各主要元器件的輸入輸出特性的補償,溫度補償電路提供兩類誤溫度漂移補償:零點溫度漂移補償與靈敏度溫度漂移補償[7]。理想傳感器的輸出量與輸入量關系。補償的原理為將b,k調整到精確的某個值,最大限度消除溫漂值b(T)和k(T)以及二次以上的非線性成分。
1.2.1零點溫度漂移補償由溫度引起零點變化而造成輸出變化的元器件中,壓力敏感元件所占比重最大,對零點補償原理如圖3所示,溫度檢測元件的輸出作為補償端與待補償信號做加減運算[8],最終輸出信號即為零點補償后輸出。該部分設計中,溫度檢測元件選擇溫度傳感器AD590,AD590封裝下、測量范圍寬、輸出線性,輸出信號噪聲僅為40pA,補償信號不引入更多的噪聲;同時由于溫度傳感器的輸出以電流的形式輸出,因此,需要通過高精密電阻器將其轉換為電壓信號后,與待補償信號做加減運算,電阻器阻值的大小根據測量的零點漂移大小計算。
1.2.2靈敏度溫度漂移補償隨著溫度的變化傳感器的滿量程輸出也會隨之變化(即增益發生變化),從輸出來看,該變化可歸一為壓力敏感元件的靈敏度發生變化,此時,需對傳感器的增益特性進行溫度補償。補償原理如圖4所示,溫度檢測元件檢測到溫度變化后,及時調整激勵源的基準[9],調整策略與增益溫度特性互補,即增益降低,則增強激勵源的基準,由激勵源輸出相應的恒流;同時可在敏感頭的橋臂上串、并聯電阻器調整增益特性。
1.3信號調理電路的設計信號調理電路用于將壓力傳感器輸出的差分信號進行放大、濾波,原理圖如圖5所示。壓阻式傳感器輸出的電壓信號大多為mV級,采用儀表放大器AD8553對傳感器輸出的信號進行放大,AD8553為軌到軌輸出,最大失調電壓僅為20μV,在頻響0.01~10Hz范圍內噪聲峰峰值為0.7μV,其中,R應大于3.92kΩ;同時由于SM5420輸出的為差分信號,在儀表放大器的輸入端需要添加抗射頻干擾的濾波電路,如圖5所示,若儀表放大器輸入前濾波電路匹配不佳,輸入的某些共模信號將轉換為差模信號,因此,通常情況下所選的C2至少比C1或者C3大10倍,用于抑制濾波電路不匹配帶來的雜散差分信號;基準源ADR4525為儀表放大器提供2.5V的參考電壓,用于調整信號的零位。儀表放大器的輸出信號需要進行濾波處理,這里采用MAX295芯片進行濾波,該芯片為8階巴特沃斯濾波器,操作簡單,只需提供輸入時鐘CLK則可任意控制濾波器的截止頻率,輸入時鐘頻率與截止頻率的關系為50︰1。
1.4數據采集電路設計該部分電路主要是將補償后的模擬信號通過A/D轉換器AD8330將其轉換成數字信號,AD8330為16位采樣精度,采樣率最高可達1MHz;采用已經使用成熟的微型處理器C8051F410進行數據采集和處理,微控制器通過SPI接口采集到量化后信號,同時通過RS—485總線轉USB適配器與計算機進行通信。
2傳感器標定與測試結果
壓力傳感器的標定主要是對零點和靈敏度的標定。將壓力傳感器安裝到壓力腔體內,共同放入高低溫試驗箱,打開高低溫試驗室箱并設置11個間隔均勻的溫度值,在不同的溫度梯度下使用壓力泵對壓力腔體打壓,并記錄壓力傳感器在零位和滿量程時的輸出值,采用最小二乘法對記錄的值進行擬合[12],得到傳感器的零點溫度漂移值和靈敏度溫度漂移值。根據得到的值調整補償電路使傳感器的輸出滿足要求。將經過補償后的壓力傳感器放入高低溫試驗箱,高低溫試驗室箱內溫度設置為25℃,在量程范圍內設置10個均勻的壓力測試點,將測試結果記錄到表1中,采用最小二乘法擬合數據得到補償后的傳感器靜態特性。通過Matlab擬合后得到傳感器輸入與輸出的線性關系式為y=0.020x+2.454,如圖6(a)所示;經過計算傳感器的靜態特性為非線性誤差為0.043%,遲滯為0.062%,重復性為0.027%,精度為0.085%,如圖6(b)所示,最大誤差位于點0kPa處,偏差為0.00154V,故非線性度小于1.54/(20.29×175)=0.043%,滿足設計的要求。在測試的過程中,由于一天當中大氣壓強的變化測試結果會受到影響。
3結束語