時間:2023-03-15 15:04:16
序論:在您撰寫光通信研究論文時,參考他人的優秀作品可以開闊視野,小編為您整理的7篇范文,希望這些建議能夠激發您的創作熱情,引導您走向新的創作高度。
關鍵詞:光纖通信核心網接入網光孤子通信全光網絡
光纖通信的發展依賴于光纖通信技術的進步。近年來,光纖通信技術得到了長足的發展,新技術不斷涌現,這大幅提高了通信能力,并使光纖通信的應用范圍不斷擴大。
一、我國光纖光纜發展的現狀
1.1普通光纖
普通單模光纖是最常用的一種光纖。隨著光通信系統的發展,光中繼距離和單一波長信道容量增大,G.652.A光纖的性能還有可能進一步優化,表現在1550rim區的低衰減系數沒有得到充分的利用和光纖的最低衰減系數和零色散點不在同一區域。符合ITUTG.654規定的截止波長位移單模光纖和符合G.653規定的色散位移單模光纖實現了這樣的改進。
1.2核心網光纜
我國已在干線(包括國家干線、省內干線和區內干線)上全面采用光纜,其中多模光纖已被淘汰,全部采用單模光纖,包括G.652光纖和G.655光纖。G.653光纖雖然在我國曾經采用過,但今后不會再發展。G.654光纖因其不能很大幅度地增加光纖系統容量,它在我國的陸地光纜中沒有使用過。干線光纜中采用分立的光纖,不采用光纖帶。干線光纜主要用于室外,在這些光纜中,曾經使用過的緊套層絞式和骨架式結構,目前已停止使用。
1.3接入網光纜
接入網中的光纜距離短,分支多,分插頻繁,為了增加網的容量,通常是增加光纖芯數。特別是在市內管道中,由于管道內徑有限,在增加光纖芯數的同時增加光纜的光纖集裝密度、減小光纜直徑和重量,是很重要的。接入網使用G.652普通單模光纖和G.652.C低水峰單模光纖。低水峰單模光纖適合于密集波分復用,目前在我國已有少量的使用。
1.4室內光纜
室內光纜往往需要同時用于話音、數據和視頻信號的傳輸。并目還可能用于遙測與傳感器。國際電工委員會(IEC)在光纜分類中所指的室內光纜,筆者認為至少應包括局內光纜和綜合布線用光纜兩大部分。局用光纜布放在中心局或其他電信機房內,布放緊密有序和位置相對固定。綜合布線光纜布放在用戶端的室內,主要由用戶使用,因此對其易損性應比局用光纜有更嚴格的考慮。
1.5電力線路中的通信光纜
光纖是介電質,光纜也可作成全介質,完全無金屬。這樣的全介質光纜將是電力系統最理想的通信線路。用于電力線桿路敷設的全介質光纜有兩種結構:即全介質自承式(ADSS)結構和用于架空地線上的纏繞式結構。ADSS光纜因其可以單獨布放,適應范圍廣,在當前我國電力輸電系統改造中得到了廣泛的應用。國內已能生產多種ADSS光纜滿足市場需要。但在產品結構和性能方面,例如大志數光纜結構、光纜蠕變和耐電弧性能等方面,還有待進一步完善。ADSS光纜在國內的近期需求量較大,是目前的一種熱門產品。
二、光纖通信技術的發展趨勢
對光纖通信而言,超高速度、超大容量和超長距離傳輸一直是人們追求的目標,而全光網絡也是人們不懈追求的夢想。
(1)超大容量、超長距離傳輸技術波分復用技術極大地提高了光纖傳輸系統的傳輸容量,在未來跨海光傳輸系統中有廣闊的應用前景。近年來波分復用系統發展迅猛,目前1.6Tbit/的WDM系統已經大量商用,同時全光傳輸距離也在大幅擴展。提高傳輸容量的另一種途徑是采用光時分復用(OTDM)技術,與WDM通過增加單根光纖中傳輸的信道數來提高其傳輸容量不同,OTDM技術是通過提高單信道速率來提高傳輸容量,其實現的單信道最高速率達640Gbit/s。
僅靠OTDM和WDM來提高光通信系統的容量畢竟有限,可以把多個OTDM信號進行波分復用,從而大幅提高傳輸容量。偏振復用(PDM)技術可以明顯減弱相鄰信道的相互作用。由于歸零(RZ)編碼信號在超高速通信系統中占空較小,降低了對色散管理分布的要求,且RZ編碼方式對光纖的非線性和偏振模色散(PMD)的適應能力較強,因此現在的超大容量WDM/OTDM通信系統基本上都采用RZ編碼傳輸方式。WDM/OTDM混合傳輸系統需要解決的關鍵技術基本上都包括在OTDM和WDM通信系統的關鍵技術中。
(2)光孤子通信光孤子是一種特殊的ps數量級的超短光脈沖,由于它在光纖的反常色散區,群速度色散和非線性效應相互平衡,因而經過光纖長距離傳輸后,波形和速度都保持不變。光孤子通信就是利用光孤子作為載體實現長距離無畸變的通信,在零誤碼的情況下信息傳遞可達萬里之遙。
光孤子技術未來的前景是:在傳輸速度方面采用超長距離的高速通信,時域和頻域的超短脈沖控制技術以及超短脈沖的產生和應用技術使現行速率10~20Gbit/s提高到100Gbit/s以上;在增大傳輸距離方面采用重定時、整形、再生技術和減少ASE,光學濾波使傳輸距離提高到100000km以上;在高性能EDFA方面是獲得低噪聲高輸出EDFA。當然實際的光孤子通信仍然存在許多技術難題,但目前已取得的突破性進展使人們相信,光孤子通信在超長距離、高速、大容量的全光通信中,尤其在海底光通信系統中,有著光明的發展前景。
(3)全光網絡
未來的高速通信網將是全光網。全光網是光纖通信技術發展的最高階段,也是理想階段。傳統的光網絡實現了節點間的全光化,但在網絡結點處仍采用電器件,限制了目前通信網干線總容量的進一步提高,因此真正的全光網已成為一個非常重要的課題。
全光網絡以光節點代替電節點,節點之間也是全光化,信息始終以光的形式進行傳輸與交換,交換機對用戶信息的處理不再按比特進行,而是根據其波長來決定路由。
目前,全光網絡的發展仍處于初期階段,但它已顯示出了良好的發展前景。從發展趨勢上看,形成一個真正的、以WDM技術與光交換技術為主的光網絡層,建立純粹的全光網絡,消除電光瓶頸已成為未來光通信發展的必然趨勢,更是未來信息網絡的核心,也是通信技術發展的最高級別,更是理想級別。
三、結語
光通信技術作為信息技術的重要支撐平臺,在未來信息社會中將起到重要作用。雖然經歷了全球光通信的“冬天”但今后光通信市場仍然將呈現上升趨勢。從現代通信的發展趨勢來看,光纖通信也將成為未來通信發展的主流。人們期望的真正的全光網絡的時代也會在不遠的將來如愿到來。
參考文獻
[摘要]光纖是通信網絡的優良傳輸介質,光纖通信是以很高頻率(1014Hz數量級)的光波作為載波、以光纖作為傳輸介質的通信,光纖通信的問世使高速率、大容量的通信成為可能,目前它已成為最主要的信息傳輸技術。介紹我國光纖通信技術的現狀,總結光纖通信技術的幾種關鍵技術,并對光纖通信技術的發展趨勢進行論述。
一、光纖通信的概況
1966年,美籍華人高錕(C.K.Kao)和霍克哈姆(C.A.Hockham),預見了低損耗的光纖能夠用于通信,敲開了光纖通信的大門,引起了人們的重視。1970年,美國康寧公司首次研制成功損耗為20dB/km的光纖,光纖通信時代由此開始。光纖通信是以很高頻率(1014Hz數量級)的光波作為載波、以光纖作為傳輸介質的通信。由于光纖通信具有損耗低、傳輸頻帶寬、容量大、體積小、重量輕、抗電磁干擾、不易串音等優點,備受業內人士青睞,發展非常迅速。光纖通信系統的傳輸容量從1980年到2000年增加了近一萬倍,傳輸速度在過去的10年中大約提高了100倍。
光纖通信的發展依賴于光纖通信技術的進步。目前,光纖通信技術已有了長足的發展,新技術也不斷涌現,進而大幅度提高了通信能力,并不斷擴大了光纖通信的應用范圍。
二、光纖通信技術發展的現狀
(一)波分復用技術。波分復用技術可以充分利用單模光纖低損耗區帶來的巨大帶寬資源。根據每一信道光波的頻率(或波長)不同,將光纖的低損耗窗口劃分成若干個信道,把光波作為信號的載波,在發送端采用波分復用器(合波器),將不同規定波長的信號光載波合并起來送入一根光纖進行傳輸。在接收端,再由一波分復用器(分波器)將這些不同波長承載不同信號的光載波分開。由于不同波長的光載波信號可以看作互相獨立(不考慮光纖非線性時),從而在一根光纖中可實現多路光信號的復用傳輸。
(二)光纖接入技術。光纖接入網是信息高速公路的“最后一公里”。實現信息傳輸的高速化,滿足大眾的需求,不僅要有寬帶的主干傳輸網絡,用戶接入部分更是關鍵,光纖接入網是高速信息流進千家萬戶的關鍵技術。在光纖寬帶接入中,由于光纖到達位置的不同,有FTTB、FTTC、FTTCab和FTTH等不同的應用,統稱FTTx。FTTH(光纖到戶)是光纖寬帶接入的最終方式,它提供全光的接入,因此,可以充分利用光纖的寬帶特性,為用戶提供所需要的不受限制的帶寬,充分滿足寬帶接入的需求。目前,國內的技術可以為用戶提供FE或GE的帶寬,對大中型企業用戶來說,是比較理想的接入方式。
三、光纖通信技術的發展趨勢
近幾年來,隨著技術的進步,電信管理體制的改革以及電信市場的逐步全面開放,光纖通信的發展又一次呈現了蓬勃發展的新局面,以下在對光纖通信領域的主要發展熱點作一簡述與展望。
(一)向超高速系統的發展。從過去20多年的電信發展史看,網絡容量的需求和傳輸速率的提高一直是一對主要矛盾。傳統光纖通信的發展始終按照電的時分復用(TDM)方式進行,每當傳輸速率提高4倍,傳輸每比特的成本大約下降30%~40%:因而高比特率系統的經濟效益大致按指數規律增長,這就是為什么光纖通信系統的傳輸速率在過去20多年來一直在持續增加的根本原因。目前商用系統已從45Mbps增加到10Gbps,其速率在20年時間里增加了2000倍,比同期微電子技術的集成度增加速度還快得多。高速系統的出現不僅增加了業務傳輸容量,而且也為各種各樣的新業務,特別是寬帶業務和多媒體提供了實現的可能。
(二)向超大容量WDM系統的演進。采用電的時分復用系統的擴容潛力已盡,然而光纖的200nm可用帶寬資源僅僅利用了不到1%,99%的資源尚待發掘。如果將多個發送波長適當錯開的光源信號同時在一極光纖上傳送,則可大大增加光纖的信息傳輸容量,這就是波分復用(WDM)的基本思路。采用波分復用系統的主要好處是:1.可以充分利用光纖的巨大帶寬資源,使容量可以迅速擴大幾倍至上百倍;2.在大容量長途傳輸時可以節約大量光纖和再生器,從而大大降低了傳輸成本:3.與信號速率及電調制方式無關,是引入寬帶新業務的方便手段;4.利用WDM網絡實現網絡交換和恢復可望實現未來透明的、具有高度生存性的光聯網。
(三)實現光聯網。上述實用化的波分復用系統技術盡管具有巨大的傳輸容量,但基本上是以點到點通信為基礎的系統,其靈活性和可靠性還不夠理想。如果在光路上也能實現類似SDH在電路上的分插功能和交叉連接功能的話,無疑將增加新一層的威力。根據這一基本思路,光的分插復用器(OADM)和光的交叉連接設備(OXC)均已在實驗室研制成功,前者已投入商用。實現光聯網的基本目的是:1.實現超大容量光網絡;2.實現網絡擴展性,允許網絡的節點數和業務量的不斷增長;3.實現網絡可重構性,達到靈活重組網絡的目的;4.實現網絡的透明性,允許互連任何系統和不同制式的信號;5.實現快速網絡恢復,恢復時間可達100ms。鑒于光聯網具有上述潛在的巨大優勢,發達國家投入了大量的人力、物力和財力進行預研。光聯網已經成為繼SDH電聯網以后的又一新的光通信發展。
關鍵詞:光纖通信技術特點發展趨勢光纖鏈路現場測試
1光纖通信技術
光纖通信是利用光作為信息載體、以光纖作為傳輸的通信方式??梢园压饫w通信看成是以光導纖維為傳輸媒介的“有線”光通信。光纖由內芯和包層組成,內芯一般為幾十微米或幾微米,比一根頭發絲還細;外面層稱為包層,包層的作用就是保護光纖。實際上光纖通信系統使用的不是單根的光纖,而是許多光纖聚集在一起的組成的光纜。由于玻璃材料是制作光纖的主要材料,它是電氣絕緣體,因而不需要擔心接地回路;光波在光纖中傳輸,不會發生信息傳播中的信息泄露現象;光纖很細,占用的體積小,這就解決了實施的空間問題。
2光纖通信技術的特點
2.1頻帶極寬,通信容量大。光纖的傳輸帶寬比銅線或電纜大得多。對于單波長光纖通信系統,由于終端設備的限制往往發揮不出帶寬大的優勢。因此需要技術來增加傳輸的容量,密集波分復用技術就能解決這個問題。
2.2損耗低,中繼距離長。目前,商品石英光纖和其它傳輸介質相比的損耗是最低的;如果將來使用非石英極低損耗傳輸介質,理論上傳輸的損耗還可以降到更低的水平。這就表明通過光纖通信系統可以減少系統的施工成本,帶來更好的經濟效益。
2.3抗電磁干擾能力強。石英有很強的抗腐蝕性,而且絕緣性好。而且它還有一個重要的特性就是抗電磁干擾的能力很強,它不受外部環境的影響,也不受人為架設的電纜等干擾。這一點對于在強電領域的通訊應用特別有用,而且在軍事上也大有用處。
2.4無串音干擾,保密性好。在電波傳輸的過程中,電磁波的傳播容易泄露,保密性差。而光波在光纖中傳播,不會發生串擾的現象,保密性強。除以上特點之外,還有光纖徑細、重量輕、柔軟、易于鋪設;光纖的原材料資源豐富,成本低;溫度穩定性好、壽命長。正是因為光纖的這些優點,光纖的應用范圍越來越廣。
3不斷發展的光纖通信技術
3.1SDH系統光通信從一開始就是為傳送基于電路交換的信息的,所以客戶信號一般是TDM的連續碼流,如PDH、SDH等。伴隨著科技的進步,特別是計算機網絡技術的發展,傳輸數據也越來越大。分組信號與連續碼流的特點完全不同,它具有不確定性,因此傳送這種信號,是光通信技術需要解決的難題。而且兩種傳送設備也是有很大區別的。
3.2不斷增加的信道容量光通信系統能從PDH發展到SDH,從155Mb/s發展到lOGb/s,近來,4OGB/s已實現商品化。專家們在研究更大容量的,如160Gb/s(單波道)系統已經試驗成功,目前還在為其制定相應的標準。此外,科學家還在研究系統容量更大的通訊技術。
3.3光纖傳輸距離從宏觀上說,光纖的傳輸距離是越遠越好,因此研究光纖的研究人員們,一直在這方面努力。在光纖放大器投入使用后,不斷有對光纖傳輸距離的突破,為增大無再生中繼距離創造了條件。
3.4向城域網發展光傳輸目前正從骨干網向城域網發展,光傳輸逐漸靠近業務節點。而人們通常認為光傳輸作為一種傳輸信息的手段還不適應城域網。作為業務節點,既接近用戶,又能保證信息的安全傳輸,而用戶還希望光傳輸能帶來更多的便利服務。
3.5互聯網發展需求與下一代全光網絡發展趨勢近年來,互聯網業發展迅速,IP業務也隨之火爆。研究表明,隨著IP業的迅速發展,通信業將面臨“洗牌”,并孕育著新技術的出現。隨著軟件控制的進一步開發和發展,現代的光通信正逐步向智能化發展,它能靈活的讓營運者自由的管理光傳輸。而且還會有更多的相關應用應運而生,為人們的使用帶來更多的方便。
綜上所述,以高速光傳輸技術、寬帶光接入技術、節點光交換技術、智能光聯網技術為核心,并面向IP互聯網應用的光波技術是目前光纖傳輸的研究熱點,而在以后,科學家還會繼續對這一領域的研究和開發。從未來的應用來看,光網絡將向著服務多元化和資源配置的方向發展,為了滿足客戶的需求,光纖通信的發展不僅要突破距離的限制,更要向智能化邁進。
4光纖鏈路的現場測試
4.1現場測試的目的對光纖安裝現場測試是光纖鏈路安裝的必須措施,是保證電纜支持網絡協議的重要方式。它的目的在于檢測光纖連接的質量是否符合標準,并且減少故障因素。:
4.2現場測試標準目前光纖鏈路現場測試標準分為兩大類:光纖系統標準和應用系統標準。①光纖系統標準:光纖系統標準是獨立于應用的光纖鏈路現場測試標準。對于不同的光纖系統,它的標準也不同。目前大多數的光纖鏈路現場檢測應用的就是這個標準。②光纖應用系統標準:光纖應用系統標準是基于安裝光纖的特定應用的光纖鏈路現場測試標準。這種測試的標準是固定的,不會因為光纖系統的不同而改變。
4.3光纖鏈路現場測試光纖通信應用的是光傳輸,它不會受到磁場等外界因素的干擾,所以對它的測試不同于對
普通的銅線電纜的測試。在光纖的測試中,雖然光纖的種類很多,但它們的測試參數都是基本一致的。在光纖鏈路現場測試中,主要是對光纖的光學特性和傳輸特性進行測試。光纖的光學特性和傳輸特性對光纖通信系統對光纖的傳輸質量有重大的影響。但由于光纖的特性不受安裝的影響,因此在安裝時不需測試,而是由生產商在生產時進行測試。
4.4現場測試工具①光源:目前的光源主要有LED(發光二極管)光源和激光光源兩種。②光功率計:光功率計是測量光纖上傳送的信號強度的設備,用于測量絕對光功率或通過一段光纖的光功率相對損耗。在光纖系統中,測量光功率是最基本的。光功率計的原理非常像電子學中的萬用表,只不過萬用表測量的是電子,而光功率計測量的是光。通過測量發射端機或光網絡的絕對功率,一臺光功率計就能夠評價光端設備的性能。用光功率計與穩定光源組合使用,組成光損失測試器,則能夠測量連接損耗、檢驗連續性,并幫助評估光纖鏈路傳輸質量。③光時域反射計:OTDR根據光的后向散射原理制作,利用光在光纖中傳播時產生的后向散射光來獲取衰減的信息,可用于測量光纖衰減、接頭損耗、光纖故障點定位以及了解光纖沿長度的損耗分布情況等。從某種意義上來說,光時域反射計(OTDR)的作用類似于在電纜測試中使用的時域反射計(TDR),只不過TDR測量的是由阻抗引起的信號反射,而OTDR測量的則是由光子的反向散射引起的信號反射。反向散射是對所有光纖都有影響的一種現象,是由于光子在光纖中發生反射所引起的。
雖然目前光通信的容量已經非常大,但仍有大量應用能力閑置,伴隨著社會經濟和科學技術的進一步發展,對信息的需求也會隨之增加,并會超過現在的網絡承載能力,因此我們必須進一步努力研究更加先進的光傳輸手段。因此,在經濟社會發展的推動下,光通信一定會有更加長久的發展。
參考文獻:
[1]王磊,裴麗.光纖通信的發展現狀和未來[J].中國科技信息.2006.(4).
[2]何淑貞,王曉梅.光通信技術的新飛躍[J].網絡電信.2004.(2).
關鍵詞:電力通信;ADSS光纜;SDH傳輸系統
0引言
電力通信是為了保證電力系統的安全穩定運行應運而生的,它同電力系統的安全穩定控制系統、調度自動化系統被人們合稱為電力系統安全穩定運行的三大支柱。因此,要求電力通信應具有很高的可靠性。目前,光纖通信在電力載波通信、微波通信、一點多址等諸多通信方式中日顯優勢,已成為電力通信網的主要傳輸方式。它是以光波為載體,以光導纖維為傳輸媒質,將信號從一處傳輸到另一處的一種通信手段。它具有傳輸的信息量大、距離遠、頻帶寬、質量高、抗干擾及輻射性強等許多優點,是集語音、圖像、數據通信為一體的綜合傳輸系統。
隨著華北油田變電站無人值守項目的實行,電網專業化管理的進一步深化,電力通信專網在整個油田電網運行管理中的地位越來越重要,積極采用新技術和新設備組建電力通信專網已是十分緊迫的任務。在此背景下,自2007年以來,華北油田進行了電力通信專網的統一規劃和建設,建成了以光纖通信為主,微波和電力載波為輔的通信系統。
1系統組成、規模及維護
1.1系統組成
(1)全介質自承光纜——ADSS(AllDielectricSelfSupporting)。ADSS光纜在輸電線路上廣泛使用,特別是在已建線路上使用較多。它能滿足輸電線跨度大、垂度大的要求。其特點是:①張力理論值為零;②為全絕緣結構,安裝及線路維護時可帶電作業,這樣可大大減少停電損失;③其伸縮率在溫差很大的范圍內可保持不變,而且其在極限溫度下,具有穩定的光學特性;④耐電蝕ADSS光纜可減少高壓感應電場對光纜的電腐蝕;⑤ADSS光纜直徑小、質量輕,可以減少冰和風對光纜的影響,其對桿塔強度的影響也很小。
(2)SDH傳輸系統。本項目SDH傳輸系統具有靈活的設備配置:STM-16/4兼容設備,支持網絡設備從622M到2.5G的在線升級,具備高低階20G全交叉能力。具有強大的組網能力支持Mesh組網,網絡節點即插即用。支持SDH業務、PDH業務、以太網等多業務接口,單子架可實現1×STM-16四纖環或2×STM-16二纖環,可支持Mesh網絡中多達40個光方向的組網;具有完善的網絡生存機制和完備的設備保護機制。
(3)同步時鐘系統。同步時鐘源包括:線路時鐘源、支路信號時鐘源、2個外同步時鐘源。每個站點可以從兩個方向提取時鐘,對這兩個方向時鐘設置優先級,當高優先級的時鐘質量低于要求時,自動跟隨另一個低優先級的時鐘,以此對同步時鐘建立起時鐘保護自愈環。
(4)網管系統。本項目網絡管理系統實現了對整個傳輸和接入設備的統一管理。網管放在電力調度中心,提供網絡拓撲、配置、安全、系統維護等管理功能,支持軟件在線升級。
(5)PCM接入系統。PCM接入系統具有集中網絡管理能力,與SDH傳輸系統統一網管,具有大容量的交叉連接矩陣,是一種SDH設備延伸的業務接入。其接口豐富,極大豐富了業務的靈活接入,擴充了傳輸業務的特殊要求。
1.2系統規模
華北油田現擁有變電站43余座,依據油田電網各變電站分布情況,以電調中心和四個集控中心為支點建立主干光纖環網通信網絡,再經光纜向35kV變電站輻射,35kV變電站之間串聯運行,力爭實現雙光纖環路,為集控化的智能電網建設提供通信保障。
1.3系統維護
SDH系統的維護主要是對光線路和設備的維護,具體如下:
(1)光纜線路情況:包括光纜的長度、芯數、接頭、跳纖及光纖的衰耗值、備纖等各方面情況。
(2)設備情況:主要包括設備的型號、配置情況、機盤功能、接口情況、面板上各種告警燈和指示燈的顯示情況及組網情況;光端機的各種測試指標;設備供電電源情況;ODF架、DDF架、VDF架及網管系統的應用情況。
(3)儀表、工具情況:SDH光傳輸系統常用儀表有:光功率計、誤碼儀等。要熟練掌握這些儀表的功能及使用方法。超級秘書網
2項目成效
華北油田電網光纖通信規劃建設為無人值守變電站的現代化自動化管理和運營提供了先進的通信手段,為油田電網的管理和運行提供了充足可靠的綜合業務接口及傳輸通道。具體來講:
(1)滿足了各站點調度電話對電路的需求。中心調度、各集控站調度、無人值守變電站之間的電力調度專用電話傳輸有了穩定可靠的通信電路來作為保障。
(2)滿足了電力自動化系統對電路的需求。電網生產實時數據等電力自動化信息對通信系統的要求越來越高,本通信系統為其提供了標準和足夠的數據接入接口,并保證了自動化數據信號的實時和無誤傳輸。
(3)滿足了監控系統對電路的需求。今后油田各個變電站將逐步向無人職守的方向發展,廣泛采用變電站遠程圖像監控技術是變電站自動化建設的發展趨勢,本通信系統為其預留了高速視頻監控通道。
(4)滿足了遠程抄表系統對電路的需求。油田的電量遠程抄表系統在不斷建設和發展,本通信系統為其提供了相應的專用數據接口和通道。
3結束語
光纖通信在華北油田電力系統的應用實現了油田通信網建設的低成本、大容量、多業務和智能化,滿足了電力數據、語音、視頻、寬帶接入等多種業務的傳輸要求,并在網絡通信的實時性、準確性和可靠性等方面為各用戶提供了充分的保障,從而保證了油田電網生產的安全經濟運行,并創造了巨大的經濟效益和社會效益。
參考文獻:
筆者認為,光纖通信技術尚有很大的發展空間,今后會有很大的需求和市場。主要是:光纖到家庭FTTH、光交換和集成光電子器件方面會有較大的發展。在此主要討論光纖通信的發展趨勢和市場。
光纖通信的發展趨勢
1、光纖到家庭(FTTH)的發展
FTTH可向用戶提供極豐富的帶寬,所以一直被認為是理想的接入方式,對于實現信息社會有重要作用,還需要大規模推廣和建設。FTTH所需要的光纖可能是現有已敷光纖的2~3倍。過去由于FTTH成本高,缺少寬帶視頻業務和寬帶內容等原因,使FTTH還未能提到日程上來,只有少量的試驗。近來,由于光電子器件的進步,光收發模塊和光纖的價格大大降低;加上寬帶內容有所緩解,都加速了FTTH的實用化進程。
發達國家對FTTH的看法不完全相同:美國AT&T認為FTTH市場較小,在0F62003宣稱:FTTH在20-50年后才有市場。美國運行商Verizon和Sprint比較積極,要在10—12年內采用FTTH改造網絡。日本NTT發展FTTH最早,現在已經有近200萬用戶。目前中國FTTH處于試點階段。
FTTH[遇到的挑戰:現在廣泛采用的ADSL技術提供寬帶業務尚有一定優勢。與FTTH相比:①價格便宜②利用原有銅線網使工程建設簡單③對于目前1Mbps—500kbps影視節目的傳輸可滿足需求。FTTH目前大量推廣受制約。
對于不久的將來要發展的寬帶業務,如:網上教育,網上辦公,會議電視,網上游戲,遠程診療等雙向業務和HDTV高清數字電視,上下行傳輸不對稱的業務,AD8L就難以滿足。尤其是HDTV,經過壓縮,目前其傳輸速率尚需19.2Mbps。正在用H.264技術開發,可壓縮到5~6Mbps。通常認為對QOS有所保證的ADSL的最高傳輸速串是2Mbps,仍難以傳輸HDTV??梢哉J為HDTV是FTTH的主要推動力。即HDTV業務到來時,非FTTH不可。
FTTH的解決方案:通常有P2P點對點和PON無源光網絡兩大類。
F2P方案一一優點:各用戶獨立傳輸,互不影響,體制變動靈活;可以采用廉價的低速光電子模塊;傳輸距離長。缺點:為了減少用戶直接到局的光纖和管道,需要在用戶區安置1個匯總用戶的有源節點。
PON方案——優點:無源網絡維護簡單;原則上可以節省光電子器件和光纖。缺點:需要采用昂貴的高速光電子模塊;需要采用區分用戶距離不同的電子模塊,以避免各用戶上行信號互相沖突;傳輸距離受PON分比而縮短;各用戶的下行帶寬互相占用,如果用戶帶寬得不到保證時,不單是要網絡擴容,還需要更換PON和更換用戶模塊來解決。(按照目前市場價格,PEP比PON經濟)。
PON有多種,一般有如下幾種:(1)APON:即ATM-PON,適合ATM交換網絡。(2)BPON:即寬帶的PON。(3)OPON:采用通用幀處理的OFP-PON。(4)EPON:采用以太網技術的PON,0EPON是千兆畢以太網的PON。(5)WDM-PON:采用波分復用來區分用戶的PON,由于用戶與波長有關,使維護不便,在FTTH中很少采用。
發達國家發展FTTH的計劃和技術方案,根據各國具體情況有所不同。美國主要采用A-PON,因為ATM交換在美國應用廣泛。日本NTT有一個B-FLETts計劃,采用P2P-MC、B-PON、G-EPON、SCM-PON等多種技術。SCM-PON:是采用副載波調制作為多信道復用的PON。
中國ATM使用遠比STM的SDH少,一般不考慮APON。我們可以考慮的是P2P、GPON和EPON。P2P方案的優缺點前面已經說過,目前比較經濟,使用靈活,傳輸距離遠等;宜采用。而比較GPON和EPON,各有利弊。GPON:采用GFP技術網絡效率高;可以有電話,適合SDH網絡,與IP結合沒有EPON好,但目前GPON技術不很成熟。EPON:與IP結合好,可用戶電話,如用電話需要借助lAD技術。目前,中國的FTTH試點采用EPON比較多。FTTH技術方案的采用,還需要根據用戶的具體情況不同而不同。
近來,無線接入技術發展迅速。可用作WLAN的IEEE802.11g協議,傳輸帶寬可達54Mbps,覆蓋范圍達100米以上,目前已可商用。如果采用無線接入WLAN作用戶的數據傳輸,包括:上下行數據和點播電視VOD的上行數據,對于一般用戶其上行不大,IEEES02.11g是可以滿足的。而采用光纖的FTTH主要是解決HDTV寬帶視頻的下行傳輸,當然在需要時也可包含一些下行數據。這就形成“光纖到家庭+無線接入”(FTTH+無線接入)的家庭網絡。這種家庭網絡,如果采用PON,就特別簡單,因為此PON無上行信號,就不需要測距的電子模塊,成本大大降低,維護簡單。如果,所屬PON的用戶群體,被無線城域網WiMAX(1EEE802.16)覆蓋而可利用,那么可不必建設專用的WLAN。接入網采用無線是趨勢,但無線接入網仍需要密布于用戶臨近的光纖網來支撐,與FTTH相差無幾。FTTH+無線接入是未來的發展趨勢。
2、光交換的發展什么是通信?
實際上可表示為:通信輸+交換。
光纖只是解決傳輸問題,還需要解決光的交換問題。過去,通信網都是由金屬線纜構成的,傳輸的是電子信號,交換是采用電子交換機?,F在,通信網除了用戶末端一小段外,都是光纖,傳輸的是光信號。合理的方法應該采用光交換。但目前,由于目前光開關器件不成熟,只能采用的是“光-電-光”方式來解決光網的交換,即把光信號變成電信號,用電子交換后,再變還光信號。顯然是不合理的辦法,是效串不高和不經濟的。正在開發大容量的光開關,以實現光交換網絡,特別是所謂ASON-自動交換光網絡。
通常在光網里傳輸的信息,一般速度都是xGbps的,電子開關不能勝任。一般要在低次群中實現電子交換。而光交換可實現高速XGbDs的交換。當然,也不是說,一切都要用光交換,特別是低速,顆粒小的信號的交換,應采用成熟的電子交換,沒有必要采用不成熟的
大容量的光交換。當前,在數據網中,信號以“包”的形式出現,采用所謂“包交換”。包的顆粒比較小,可采用電子交換。然而,在大量同方向的包匯總后,數量很大時,就應該采用容量大的光交換。目前,少通道大容量的光交換已有實用。如用于保護、下路和小量通路調度等。一般采用機械光開關、熱光開關來實現。目前,由于這些光開關的體積、功耗和集成度的限制,通路數一般在8—16個。
電子交換一般有“空分”和“時分”方式。在光交換中有“空分”、“時分”和“波長交換”。光纖通信很少采用光時分交換。
光空分交換:一般采用光開關可以把光信號從某一光纖轉到另一光纖。空分的光開關有機械的、半導體的和熱光開關等。近來,采用集成技術,開發出MEM微電機光開關,其體積小到mm。已開發出1296x1296MEM光交換機(Lucent),屬于試驗性質的。
光波長交換:是對各交換對象賦于1個特定的波長。于是,發送某1特定波長就可對某特定對象通信。實現光波長交換的關鍵是需要開發實用化的可變波長的光源,光濾波器和集成的低功耗的可靠的光開關陣列等。已開發出640x640半導體光開關+AWG的空分與波長的相結合的交叉連接試驗系統(corning)。采用光空分和光波分可構成非常靈活的光交換網。日本NTT在Chitose市進行了采用波長路由交換的現場試驗,半徑5公里,共有43個終端節,(試用5個節點),速率為2.5Gbps。
自動交換的光網,稱為ASON,是進一步發展的方向。
3、集成光電子器件的發展
如同電子器件那樣,光電子器件也要走向集成化。雖然不是所有的光電子器件都要集成,但會有相當的一部分是需要而且是可以集成的。目前正在發展的PLC-平面光波導線路,如同一塊印刷電路板,可以把光電子器件組裝于其上,也可以直接集成為一個光電子器件。要實現FTTH也好,ASON也好,都需要有新的、體積小的和廉價的和集成的光電子器件。
日本NTT采用PLO技術研制出16x16熱光開關;1x128熱光開關陣列;用集成和混合集成工藝把32通路的AWG+可變光衰減器+光功率監測集成在一起;8波長每波速串為80Gbps的WDM的復用和去復用分別集成在1塊芯片上,尺寸僅15x7mm,如圖1。NTT采用以上集成器件構成32通路的OADM。其中有些已經商用。近幾年,集成光電子器件有比較大的改進。
中國的集成光電子器件也有一定進展。集成的小通道光開關和屬于PLO技術的AWG有所突破。但與發達國家尚有較大差距。如果我們不迎頭趕上,就會重復如同微電子落后的被動局面。
光纖通信的市場
眾所周知,2000年IT行業泡沫,使光纖通信產業生產規模爆炸性地發展,產品生產過剩。無論是光傳輸設備,光電子器件和光纖的價格都狂跌。特別是光纖,每公里泡沫時期價格為羊1200,現在價格Y100左右1公里,比銅線還便宜。光纖通信的市場何時能恢復?根據RHK的對北美通信產業投入的統計和預測,如圖2.在2002年是最低谷,相當于倒退4年?,F在有所回升,但還不能恢復。按此推測,在2007-2008年才能復元。光纖通信的市場也隨IT市場好轉。這些好轉,在相當大的程度是由FTTH和寬帶數字電視所帶動的。
關鍵詞:光波分復用(WDM);光載波;光纖
一、光波分復用(WDM)技術
光波分復用(WavelengthDivisionMultiplexing,WDM)技術是在一根光纖中同時同時多個波長的光載波信號,而每個光載波可以通過FDM或TDM方式,各自承載多路模擬或多路數字信號。其基本原理是在發送端將不同波長的光信號組合起來(復用),并耦合到光纜線路上的同一根光纖中進行傳輸,在接收端又將這些組合在一起的不同波長的信號分開(解復用),并作進一步處理,恢復出原信號后送入不同的終端。因此將此項技術稱為光波長分割復用,簡稱光波分復用技術。
WDM技術對網絡的擴容升級,發展寬帶業務,挖掘光纖帶寬能力,實現超高速通信等均具有十分重要的意義,尤其是加上摻鉺光纖放大器(EDFA)的WDM對現代信息網絡更具有強大的吸引力。
二、WDM系統的基本構成
WDM系統的基本構成主要分雙纖單向傳輸和單纖雙向傳輸兩種方式。單向WDM是指所有光通路同時在一根光纖上沿同一方向傳送,在發送端將載有各種信息的具有不同波長的已調光信號通過光延長用器組合在一起,并在一根光纖中單向傳輸,由于各信號是通過不同波長的光攜帶的,所以彼此間不會混淆,在接收端通過光的復用器將不同波長的光信號分開,完成多路光信號的傳輸,而反方向則通過另一根光纖傳送。雙向WDM是指光通路在一要光纖上同時向兩個不同的方向傳輸,所用的波長相互分開,以實現彼此雙方全雙工的通信聯絡。目前單向的WDM系統在開發和應用方面都比較廣泛,而雙向WDM由于在設計和應用時受各通道干擾、光反射影響、雙向通路間的隔離和串話等因素的影響,目前實際應用較少。
三、雙纖單向WDM系統的組成
以雙纖單向WDM系統為例,一般而言,WDM系統主要由以下5部分組成:光發射機、光中繼放大器、光接收機、光監控信道和網絡管理系統。
1.光發射機
光發射機是WDM系統的核心,除了對WDM系統中發射激光器的中心波長有特殊的要求外,還應根據WDM系統的不同應用(主要是傳輸光纖的類型和傳輸距離)來選擇具有一定色度色散容量的發射機。在發送端首先將來自終端設備輸出的光信號利用光轉發器把非特定波長的光信號轉換成具有穩定的特定波長的信號,再利用合波器合成多通路光信號,通過光功率放大器(BA)放大輸出。
2.光中繼放大器
經過長距離(80~120km)光纖傳輸后,需要對光信號進行光中繼放大,目前使用的光放大器多數為摻鉺光纖光放大器(EDFA)。在WDM系統中必須采用增益平坦技術,使EDFA對不同波長的光信號具有相同的放大增益,并保證光信道的增益競爭不影響傳輸性能。
3.光接收機
在接收端,光前置放大器(PA)放大經傳輸而衰減的主信道信號,采用分波器從主信道光信號中分出特定波長的光信道,接收機不但要滿足對光信號靈敏度、過載功率等參數的要求,還要能承受一定光噪聲的信號,要有足夠的電帶寬性能。
4.光監控信道
光監控信道的主要功能是監控系統內各信道的傳輸情況。在發送端插入本節點產生的波長為λs(1550nm)的光監控信號,與主信道的光信號合波輸出。在接收端,將接收到的光信號分波,分別輸出λs(1550nm)波長的光監控信號和業務信道光信號。幀同步字節、公務字節和網管使用的開銷字節都是通過光監控信道來傳遞的。
5.網絡管理系統
網絡管理系統通過光監控信道傳送開銷字節到其他節點或接收來自其他節點的開銷字節對WDM系統進行管理,實現配置管理、故障管理、性能管理、安全管理等功能。
四、光波分復用器和解復用器
在整個WDM系統中,光波分復用器和解復用器是WDM技術中的關鍵部件,其性能的優劣對系統的傳輸質量具有決定性作用。將不同光源波長的信號結合在一起經一根傳輸光纖輸出的器件稱為復用器;反之,將同一傳輸光纖送來的多波長信號分解為個別波長分別輸出的器件稱為解復用器。從原理上說,該器件是互易(雙向可逆)的,即只要將解復用器的輸出端和輸入端反過來使用,就是復用器。光波分復用器性能指標主要有接入損耗和串擾,要求損耗及頻偏要小,接入損耗要小于1.0~2.5db,信道間的串擾小,隔離度大,不同波長信號間影響小。在目前實際應用的WDM系統中,主要有光柵型光波分復用器和介質膜濾波器型光波分復用器。
1.光柵型光波分復用器
閃耀光柵是在一塊能夠透射或反射的平面上刻劃平等且等距的槽痕,其刻槽具有小階梯似的形狀。當含有多波長的光信號通過光柵產生衍射時,不同波長成分的光信號將以不同的角度射出。當光纖中的光信號經透鏡以平行光束射向閃耀光柵時,由于光柵的衍射作用,不同波長的光信號以方向略有差異的各種平行光返回透鏡傳輸,再經透鏡聚焦后,以一定規律分別注入輸出光纖,從而將不同波長的光信號分別以不同的光纖傳輸,達到解復用的目的。根據互易原理,將光波分復用輸入和輸出互換即可達到復用的目的。
2.介質膜濾波器型光波分復用器
目前WDM系統工作在1550nm波長區段內,用8,16或更多個波長,在一對光纖上(也可用單光纖)構成光通信系統。其波長與光纖損耗的關系見圖4。每個波長之間為1.6nm、0.8nm或更窄的間隔,對應200GHz、100GHz或更窄的帶寬。
五、WDM技術的主要特點
1.充分利用光纖的巨大帶寬資源,使一根光纖的傳輸容量比單波長傳輸增加幾倍到幾十倍,從而增加光纖的傳輸容量,降低成本,具有很大的應用價值和經濟價值。
2.由于WDM技術中使用的各波長相互獨立,因而可以傳輸特性完全不同的信號,完成各種信號的綜合和分離,實現多媒體信號混合傳輸。
3.由于許多通信都采用全雙式方式,因此采用WDM技術可節省大量線路投資。
4.根據需要,WDM技術可以有很多應用形式,如長途干線網、廣播式分配網絡,多路多地局域網等,因此對網絡應用十分重要。
[關鍵詞]光纖通信核心網接入網光孤子通信全光網絡
近年來,光纖通信技術得到了長足的發展,新技術不斷涌現,這大幅提高了通信能力,并使光纖通信的應用范圍不斷擴大。
一、我國光纖光纜發展的現狀
1.普通光纖
普通單模光纖是最常用的一種光纖。隨著光通信系統的發展,光中繼距離和單一波長信道容量增大,G..652.A光纖的性能還有可能進一步優化,表現在1550rim區的低衰減系數沒有得到充分的利用和光纖的最低衰減系數和零色散點不在同一區域。符合ITUTG.654規定的截止波長位移單模光纖和符合G..653規定的色散位移單模光纖實現了這樣的改進。
2.核心網光纜
我國已在干線(包括國家干線、省內干線和區內干線)上全面采用光纜,其中多模光纖已被淘汰,全部采用單模光纖,包括G..652光纖和G..655光纖。G..653光纖雖然在我國曾經采用過,但今后不會再發展。G..654光纖因其不能很大幅度地增加光纖系統容量,它在我國的陸地光纜中沒有使用過。干線光纜中采用分立的光纖,不采用光纖帶。干線光纜主要用于室外,在這些光纜中,曾經使用過的緊套層絞式和骨架式結構,目前已停止使用。
3.接入網光纜
接入網中的光纜距離短,分支多,分插頻繁,為了增加網的容量,通常是增加光纖芯數。特別是在市內管道中,由于管道內徑有限,在增加光纖芯數的同時增加光纜的光纖集裝密度、減小光纜直徑和重量,是很重要的。接入網使用G..652普通單模光纖和G..652.C低水峰單模光纖。低水峰單模光纖適合于密集波分復用,目前在我國已有少量的使用。
4.室內光纜
室內光纜往往需要同時用于話音、數據和視頻信號的傳輸。并且還可能用于遙測與傳感器。國際電工委員會(IEC)在光纜分類中所指的室內光纜,筆者認為至少應包括局內光纜和綜合布線用光纜兩大部分。局用光纜布放在中心局或其他電信機房內,布放緊密有序和位置相對固定。結合布線光纜布放在用戶端的室內,主要由用戶使用,因此對其易損性應比局用光纜有更嚴格的考慮。
5.電力線路中的通信光纜
光纖是介電質,光纜也可作成全介質,完全無金屬。這樣的全介質光纜將是電力系統最理想的通信線路。用于電力線桿路敷設的全介質光纜有兩種結構:即全介質自承式(ADSS)結構和用于架空地線上的纏繞式結構。ADSS光纜因其可以單獨布放,適應范圍廣,在當前我國電力輸電系統改造中得到了廣泛的應用。ADSS光纜在國內的近期需求量較大,是目前的一種熱門產品。
二、光纖通信技術的發展趨勢
對光纖通信而言,超高速度、超大容量和超長距離傳輸一直是人們追求的目標,而全光網絡也是人們不懈追求的夢想。
1.超大容量、超長距離傳輸技術波分復用技術極大地提高了光纖傳輸系統的傳輸容量,在未來跨海光傳輸系統中有廣闊的應用前景。近年來波分復用系統發展迅猛,目前1.6Tbit/的WDM系統已經大量商用,同時全光傳輸距離也在大幅擴展。提高傳輸容量的另一種途徑是采用光時分復用(OTDM)技術,與WDM通過增加單根光纖中傳輸的信道數來提高其傳輸容量不同,OTDM技術是通過提高單信道速率來提高傳輸容量,其實現的單信道最高速率達640Gbit/s。
僅靠OTDM和WDM來提高光通信系統的容量畢竟有限,可以把多個OTDM信號進行波分復用,從而大幅提高傳輸容量。偏振復用(PDM)技術可以明顯減弱相鄰信道的相互作用。由于歸零(RZ)編碼信號在超高速通信系統中占空較小,降低了對色散管理分布的要求,且RZ編碼方式對光纖的非線性和偏振模色散(PMD)的適應能力較強,因此現在的超大容量WDM/OTDM通信系統基本上都采用RZ編碼傳輸方式。WDM/OTDM混合傳輸系統需要解決的關鍵技術基本上都包括在OTDM和WDM通信系統的關鍵技術中。
2.光孤子通信。光孤子是一種特殊的ps數量級的超短光脈沖,由于它在光纖的反常色散區,群速度色散和非線性效應相互平衡,因而經過光纖長距離傳輸后,波形和速度都保持不變。光孤子通信就是利用光孤子作為載體實現長距離無畸變的通信,在零誤碼的情況下信息傳遞可達萬里之遙。
光孤子技術未來的前景是:在傳輸速度方面采用超長距離的高速通信,時域和頻域的超短脈沖控制技術以及超短脈沖的產生和應用技術使現行速率10-20Gbit/s提高到100Gbit/s以上;在增大傳輸距離方面采用重定時、整形、再生技術和減少ASE,光學濾波使傳輸距離提高到100000km以上;在高性能EDFA方面是獲得低噪聲高輸出EDFA。當然實際的光孤子通信仍然存在許多技術難題,但目前已取得的突破性進展使人們相信,光孤子通信在超長距離、高速、大容量的全光通信中,尤其在海底光通信系統中,有著光明的發展前景。
3.全光網絡。未來的高速通信網將是全光網。全光網是光纖通信技術發展的最高階段,也是理想階段。傳統的光網絡實現了節點間的全光化,但在網絡結點處仍采用電器件,限制了目前通信網干線總容量的進一步提高,因此真正的全光網已成為一個非常重要的課題。
全光網絡以光節點代替電節點,節點之間也是全光化,信息始終以光的形式進行傳輸與交換,交換機對用戶信息的處理不再按比特進行,而是根據其波長來決定路由。
目前,全光網絡的發展仍處于初期階段,但它已顯示出了良好的發展前景。從發展趨勢上看,形成一個真正的、以WDM技術與光交換技術為主的光網絡層,建立純粹的全光網絡,消除電光瓶頸已成為未來光通信發展的必然趨勢,更是未來信息網絡的核心,也是通信技術發展的最高級別,更是理想級別。
三、結語
光通信技術作為信息技術的重要支撐平臺,在未來信息社會中將起到重要作用,雖然經歷了全球光通信的“冬天”,但今后光通信市場仍然將呈現上升趨勢。從現代通信的發展趨勢來看,光纖通信也將成為未來通信發展的主流。人們期望的真正的全光網絡的時代也會在不遠的將來到來。
參考文獻:
[1]辛化梅,李忠.論光纖通信技術的現狀及發展[J].山東師范大學學報(自然科學版),2003,(04).