時間:2022-06-21 10:22:41
序論:在您撰寫電壓表設計論文時,參考他人的優秀作品可以開闊視野,小編為您整理的7篇范文,希望這些建議能夠激發您的創作熱情,引導您走向新的創作高度。
在單片機數據采集電路的設計中,做到了電路設計的最小化,即沒用任何附加邏輯器件做接口電路,實現了單片機對AD678轉換芯片的操作。
AD678是一種高檔的、多功能的12位ADC,由于其內部自帶有采樣保持器、高精度參考電源、內部時鐘和三態緩沖數據輸出等部件,所以只需要很少的外部元件就可以構成完整的數據采集系統,而且一次A/D轉換僅需要5ms。
在電路應用中,AD678采用同步工作方式,12位數字量輸出采用8位操作模式,即12位轉換數字量采用兩次讀取的方式,先讀取其高8位,再讀取其低4位。根據時序關系,在芯片選擇/CS=0時,轉換端/SC由高到低變化一次,即可啟動A/D轉換一次。再查詢轉換結束端/EOC,看轉換是否已經結束,若結束則使輸出使能/OE變低,輸出有效。12位數字量的讀取則要控制高字節有效端/HBE,先讀取高字節,再讀取低字節。整個A/D操作大致如此,在實際開發應用中調整。
由于電路中采用AD678的雙極性輸入方式,輸入電壓范圍是-5~+5V,根據公式Vx10(V)/4096*Dx,即可計算出所測電壓Vx值的大小。式中Dx為被測直流電壓轉換后的12位數字量值。
RS232接口電路的設計
AT89S51與PC的接口電路采用芯片Max232。Max232是德州儀器公司(TI)推出的一款兼容RS232標準的芯片。該器件包含2個驅動器、2個接收器和1個電壓發生器電路提供TIA/EIA-232-F電平。Max232芯片起電平轉換的功能,使單片機的TTL電平與PC的RS232電平達到匹配。
串口通信的RS232接口采用9針串口DB9,串口傳輸數據只要有接收數據針腳和發送針腳就能實現:同一個串口的接收腳和發送腳直接用線相連,兩個串口相連或一個串口和多個串口相連。在實驗中,用定時器T1作波特率發生器,其計數初值X按以下公式計算:
串行通信波特率設置為1200b/s,而SMOD=1,fosc=6MHz,計算得到計數初值X=0f3H。在編程中將其裝入TL1和THl中即可。
為了便于觀察,當每次測量電壓采集數據時,單片機有端口輸出時,用發光二極管LED指示。
軟件編程
軟件程序主要包括:下位機數據采集程序、上位機可視化界面程序、單片機與PC串口通信程序。單片機采用C51語言編程,上位機的操作顯示界面采用VC++6.0進行可視化編程。在串口通信調試過程中,借助“串口調試助手”工具,有效利用這個工具為整個系統提高效率。單片機編程
下位機單片機的數據采集通信主程序流程如圖2所示、中斷子程序如圖3所示、采集子程序如圖4所示。單片機的編程仿真調試借助WAVE2000仿真器,本系統有集成的ISP仿真調試環境。
在采集程序中,單片機的編程操作要完全符合AD678的時序規范要求,在實際開發中,要不斷加以調試。最后將下位機調試成功而生成的.bin文件固化到AT89S51的Flash單元中。
人機界面編程
打開VC++6.0,建立一個基于對話框的MFC應用程序,串口通信采用MSComm控件來實現。其他操作此處不贅述,編程實現一個良好的人機界面。數字直流電壓表的操作界面如圖5所示。運行VC++6.0編程實現的Windows程序,整個樣機功能得以實現。
功能結果
數字電壓表的設計和開發,已經有多種類型和款式。傳統的數字電壓表各有特點,它們適合在現場做手工測量,要完成遠程測量并要對測量數據做進一步分析處理,傳統數字電壓表是無法完成的。然而基于PC通信的數字電壓表,既可以完成測量數據的傳遞,又可借助PC,做測量數據的處理。所以這種類型的數字電壓表無論在功能和實際應用上,都具有傳統數字電壓表無法比擬的特點,這使得它的開發和應用具有良好的前景。
新型數字電壓表的整機設計
該新型數字電壓表測量電壓類型是直流,測量范圍是-5~+5V。整機電路包括:數據采集電路的單片機最小化設計、單片機與PC接口電路、單片機時鐘電路、復位電路等。下位機采用AT89S51芯片,A/D轉換采用AD678芯片。通過RS232串行口與PC進行通信,傳送所測量的直流電壓數據。整機系統電路如圖1所示。
數據采集電路的原理
在單片機數據采集電路的設計中,做到了電路設計的最小化,即沒用任何附加邏輯器件做接口電路,實現了單片機對AD678轉換芯片的操作。
AD678是一種高檔的、多功能的12位ADC,由于其內部自帶有采樣保持器、高精度參考電源、內部時鐘和三態緩沖數據輸出等部件,所以只需要很少的外部元件就可以構成完整的數據采集系統,而且一次A/D轉換僅需要5ms。
在電路應用中,AD678采用同步工作方式,12位數字量輸出采用8位操作模式,即12位轉換數字量采用兩次讀取的方式,先讀取其高8位,再讀取其低4位。根據時序關系,在芯片選擇/CS=0時,轉換端/SC由高到低變化一次,即可啟動A/D轉換一次。再查詢轉換結束端/EOC,看轉換是否已經結束,若結束則使輸出使能/OE變低,輸出有效。12位數字量的讀取則要控制高字節有效端/HBE,先讀取高字節,再讀取低字節。整個A/D操作大致如此,在實際開發應用中調整。
由于電路中采用AD678的雙極性輸入方式,輸入電壓范圍是-5~+5V,根據公式Vx10(V)/4096*Dx,即可計算出所測電壓Vx值的大小。式中Dx為被測直流電壓轉換后的12位數字量值。
RS232接口電路的設計
AT89S51與PC的接口電路采用芯片Max232。Max232是德州儀器公司(TI)推出的一款兼容RS232標準的芯片。該器件包含2個驅動器、2個接收器和1個電壓發生器電路提供TIA/EIA-232-F電平。Max232芯片起電平轉換的功能,使單片機的TTL電平與PC的RS232電平達到匹配。
串口通信的RS232接口采用9針串口DB9,串口傳輸數據只要有接收數據針腳和發送針腳就能實現:同一個串口的接收腳和發送腳直接用線相連,兩個串口相連或一個串口和多個串口相連。在實驗中,用定時器T1作波特率發生器,其計數初值X按以下公式計算:
串行通信波特率設置為1200b/s,而SMOD=1,fosc=6MHz,計算得到計數初值X=0f3H。在編程中將其裝入TL1和THl中即可。
為了便于觀察,當每次測量電壓采集數據時,單片機有端口輸出時,用發光二極管LED指示。
軟件編程
軟件程序主要包括:下位機數據采集程序、上位機可視化界面程序、單片機與PC串口通信程序。單片機采用C51語言編程,上位機的操作顯示界面采用VC++6.0進行可視化編程。在串口通信調試過程中,借助“串口調試助手”工具,有效利用這個工具為整個系統提高效率。單片機編程
下位機單片機的數據采集通信主程序流程如圖2所示、中斷子程序如圖3所示、采集子程序如圖4所示。單片機的編程仿真調試借助WAVE2000仿真器,本系統有集成的ISP仿真調試環境。
在采集程序中,單片機的編程操作要完全符合AD678的時序規范要求,在實際開發中,要不斷加以調試。最后將下位機調試成功而生成的.bin文件固化到AT89S51的Flash單元中。
人機界面編程
打開VC++6.0,建立一個基于對話框的MFC應用程序,串口通信采用MSComm控件來實現。其他操作此處不贅述,編程實現一個良好的人機界面。數字直流電壓表的操作界面如圖5所示。運行VC++6.0編程實現的Windows程序,整個樣機功能得以實現。
功能結果
數字電壓表的設計和開發,已經有多種類型和款式。傳統的數字電壓表各有特點,它們適合在現場做手工測量,要完成遠程測量并要對測量數據做進一步分析處理,傳統數字電壓表是無法完成的。然而基于PC通信的數字電壓表,既可以完成測量數據的傳遞,又可借助PC,做測量數據的處理。所以這種類型的數字電壓表無論在功能和實際應用上,都具有傳統數字電壓表無法比擬的特點,這使得它的開發和應用具有良好的前景。
新型數字電壓表的整機設計
該新型數字電壓表測量電壓類型是直流,測量范圍是-5~+5V。整機電路包括:數據采集電路的單片機最小化設計、單片機與PC接口電路、單片機時鐘電路、復位電路等。下位機采用AT89S51芯片,A/D轉換采用AD678芯片。通過RS232串行口與PC進行通信,傳送所測量的直流電壓數據。整機系統電路如圖1所示。
數據采集電路的原理
在單片機數據采集電路的設計中,做到了電路設計的最小化,即沒用任何附加邏輯器件做接口電路,實現了單片機對AD678轉換芯片的操作。
AD678是一種高檔的、多功能的12位ADC,由于其內部自帶有采樣保持器、高精度參考電源、內部時鐘和三態緩沖數據輸出等部件,所以只需要很少的外部元件就可以構成完整的數據采集系統,而且一次A/D轉換僅需要5ms。
在電路應用中,AD678采用同步工作方式,12位數字量輸出采用8位操作模式,即12位轉換數字量采用兩次讀取的方式,先讀取其高8位,再讀取其低4位。根據時序關系,在芯片選擇/CS=0時,轉換端/SC由高到低變化一次,即可啟動A/D轉換一次。再查詢轉換結束端/EOC,看轉換是否已經結束,若結束則使輸出使能/OE變低,輸出有效。12位數字量的讀取則要控制高字節有效端/HBE,先讀取高字節,再讀取低字節。整個A/D操作大致如此,在實際開發應用中調整。
由于電路中采用AD678的雙極性輸入方式,輸入電壓范圍是-5~+5V,根據公式Vx10(V)/4096*Dx,即可計算出所測電壓Vx值的大小。式中Dx為被測直流電壓轉換后的12位數字量值。
RS232接口電路的設計
AT89S51與PC的接口電路采用芯片Max232。Max232是德州儀器公司(TI)推出的一款兼容RS232標準的芯片。該器件包含2個驅動器、2個接收器和1個電壓發生器電路提供TIA/EIA-232-F電平。Max232芯片起電平轉換的功能,使單片機的TTL電平與PC的RS232電平達到匹配。
串口通信的RS232接口采用9針串口DB9,串口傳輸數據只要有接收數據針腳和發送針腳就能實現:同一個串口的接收腳和發送腳直接用線相連,兩個串口相連或一個串口和多個串口相連。在實驗中,用定時器T1作波特率發生器,其計數初值X按以下公式計算:
串行通信波特率設置為1200b/s,而SMOD=1,fosc=6MHz,計算得到計數初值X=0f3H。在編程中將其裝入TL1和THl中即可。
為了便于觀察,當每次測量電壓采集數據時,單片機有端口輸出時,用發光二極管LED指示。
軟件編程
軟件程序主要包括:下位機數據采集程序、上位機可視化界面程序、單片機與PC串口通信程序。單片機采用C51語言編程,上位機的操作顯示界面采用VC++6.0進行可視化編程。在串口通信調試過程中,借助“串口調試助手”工具,有效利用這個工具為整個系統提高效率。
單片機編程
下位機單片機的數據采集通信主程序流程如圖2所示、中斷子程序如圖3所示、采集子程序如圖4所示。單片機的編程仿真調試借助WAVE2000仿真器,本系統有集成的ISP仿真調試環境。
在采集程序中,單片機的編程操作要完全符合AD678的時序規范要求,在實際開發中,要不斷加以調試。最后將下位機調試成功而生成的.bin文件固化到AT89S51的Flash單元中。
人機界面編程
打開VC++6.0,建立一個基于對話框的MFC應用程序,串口通信采用MSComm控件來實現。其他操作此處不贅述,編程實現一個良好的人機界面。數字直流電壓表的操作界面如圖5所示。運行VC++6.0編程實現的Windows程序,整個樣機功能得以實現。
功能結果
數字電壓表的設計和開發,已經有多種類型和款式。傳統的數字電壓表各有特點,它們適合在現場做手工測量,要完成遠程測量并要對測量數據做進一步分析處理,傳統數字電壓表是無法完成的。然而基于PC通信的數字電壓表,既可以完成測量數據的傳遞,又可借助PC,做測量數據的處理。所以這種類型的數字電壓表無論在功能和實際應用上,都具有傳統數字電壓表無法比擬的特點,這使得它的開發和應用具有良好的前景。
新型數字電壓表的整機設計
該新型數字電壓表測量電壓類型是直流,測量范圍是-5~+5V。整機電路包括:數據采集電路的單片機最小化設計、單片機與PC接口電路、單片機時鐘電路、復位電路等。下位機采用AT89S51芯片,A/D轉換采用AD678芯片。通過RS232串行口與PC進行通信,傳送所測量的直流電壓數據。整機系統電路如圖1所示。
數據采集電路的原理
在單片機數據采集電路的設計中,做到了電路設計的最小化,即沒用任何附加邏輯器件做接口電路,實現了單片機對AD678轉換芯片的操作。
AD678是一種高檔的、多功能的12位ADC,由于其內部自帶有采樣保持器、高精度參考電源、內部時鐘和三態緩沖數據輸出等部件,所以只需要很少的外部元件就可以構成完整的數據采集系統,而且一次A/D轉換僅需要5ms。
在電路應用中,AD678采用同步工作方式,12位數字量輸出采用8位操作模式,即12位轉換數字量采用兩次讀取的方式,先讀取其高8位,再讀取其低4位。根據時序關系,在芯片選擇/CS=0時,轉換端/SC由高到低變化一次,即可啟動A/D轉換一次。再查詢轉換結束端/EOC,看轉換是否已經結束,若結束則使輸出使能/OE變低,輸出有效。12位數字量的讀取則要控制高字節有效端/HBE,先讀取高字節,再讀取低字節。整個A/D操作大致如此,在實際開發應用中調整。
由于電路中采用AD678的雙極性輸入方式,輸入電壓范圍是-5~+5V,根據公式Vx10(V)/4096*Dx,即可計算出所測電壓Vx值的大小。式中Dx為被測直流電壓轉換后的12位數字量值。
RS232接口電路的設計
AT89S51與PC的接口電路采用芯片Max232。Max232是德州儀器公司(TI)推出的一款兼容RS232標準的芯片。該器件包含2個驅動器、2個接收器和1個電壓發生器電路提供TIA/EIA-232-F電平。Max232芯片起電平轉換的功能,使單片機的TTL電平與PC的RS232電平達到匹配。
串口通信的RS232接口采用9針串口DB9,串口傳輸數據只要有接收數據針腳和發送針腳就能實現:同一個串口的接收腳和發送腳直接用線相連,兩個串口相連或一個串口和多個串口相連。在實驗中,用定時器T1作波特率發生器,其計數初值X按以下公式計算:
串行通信波特率設置為1200b/s,而SMOD=1,fosc=6MHz,計算得到計數初值X=0f3H。在編程中將其裝入TL1和THl中即可。
為了便于觀察,當每次測量電壓采集數據時,單片機有端口輸出時,用發光二極管LED指示。
軟件編程
軟件程序主要包括:下位機數據采集程序、上位機可視化界面程序、單片機與PC串口通信程序。單片機采用C51語言編程,上位機的操作顯示界面采用VC++6.0進行可視化編程。在串口通信調試過程中,借助“串口調試助手”工具,有效利用這個工具為整個系統提高效率。
單片機編程
下位機單片機的數據采集通信主程序流程如圖2所示、中斷子程序如圖3所示、采集子程序如圖4所示。單片機的編程仿真調試借助WAVE2000仿真器,本系統有集成的ISP仿真調試環境。
在采集程序中,單片機的編程操作要完全符合AD678的時序規范要求,在實際開發中,要不斷加以調試。最后將下位機調試成功而生成的.bin文件固化到AT89S51的Flash單元中。
人機界面編程
打開VC++6.0,建立一個基于對話框的MFC應用程序,串口通信采用MSComm控件來實現。其他操作此處不贅述,編程實現一個良好的人機界面。數字直流電壓表的操作界面如圖5所示。運行VC++6.0編程實現的Windows程序,整個樣機功能得以實現。
功能結果
數字電壓表的設計和開發,已經有多種類型和款式。傳統的數字電壓表各有特點,它們適合在現場做手工測量,要完成遠程測量并要對測量數據做進一步分析處理,傳統數字電壓表是無法完成的。然而基于PC通信的數字電壓表,既可以完成測量數據的傳遞,又可借助PC,做測量數據的處理。所以這種類型的數字電壓表無論在功能和實際應用上,都具有傳統數字電壓表無法比擬的特點,這使得它的開發和應用具有良好的前景。
新型數字電壓表的整機設計
該新型數字電壓表測量電壓類型是直流,測量范圍是-5~+5V。整機電路包括:數據采集電路的單片機最小化設計、單片機與PC接口電路、單片機時鐘電路、復位電路等。下位機采用AT89S51芯片,A/D轉換采用AD678芯片。通過RS232串行口與PC進行通信,傳送所測量的直流電壓數據。整機系統電路如圖1所示。
數據采集電路的原理
在單片機數據采集電路的設計中,做到了電路設計的最小化,即沒用任何附加邏輯器件做接口電路,實現了單片機對AD678轉換芯片的操作。
AD678是一種高檔的、多功能的12位ADC,由于其內部自帶有采樣保持器、高精度參考電源、內部時鐘和三態緩沖數據輸出等部件,所以只需要很少的外部元件就可以構成完整的數據采集系統,而且一次A/D轉換僅需要5ms。
在電路應用中,AD678采用同步工作方式,12位數字量輸出采用8位操作模式,即12位轉換數字量采用兩次讀取的方式,先讀取其高8位,再讀取其低4位。根據時序關系,在芯片選擇/CS=0時,轉換端/SC由高到低變化一次,即可啟動A/D轉換一次。再查詢轉換結束端/EOC,看轉換是否已經結束,若結束則使輸出使能/OE變低,輸出有效。12位數字量的讀取則要控制高字節有效端/HBE,先讀取高字節,再讀取低字節。整個A/D操作大致如此,在實際開發應用中調整。
由于電路中采用AD678的雙極性輸入方式,輸入電壓范圍是-5~+5V,根據公式Vx10(V)/4096*Dx,即可計算出所測電壓Vx值的大小。式中Dx為被測直流電壓轉換后的12位數字量值。
RS232接口電路的設計
AT89S51與PC的接口電路采用芯片Max232。Max232是德州儀器公司(TI)推出的一款兼容RS232標準的芯片。該器件包含2個驅動器、2個接收器和1個電壓發生器電路提供TIA/EIA-232-F電平。Max232芯片起電平轉換的功能,使單片機的TTL電平與PC的RS232電平達到匹配。
串口通信的RS232接口采用9針串口DB9,串口傳輸數據只要有接收數據針腳和發送針腳就能實現:同一個串口的接收腳和發送腳直接用線相連,兩個串口相連或一個串口和多個串口相連。在實驗中,用定時器T1作波特率發生器,其計數初值X按以下公式計算:
串行通信波特率設置為1200b/s,而SMOD=1,fosc=6MHz,計算得到計數初值X=0f3H。在編程中將其裝入TL1和THl中即可。
為了便于觀察,當每次測量電壓采集數據時,單片機有端口輸出時,用發光二極管LED指示。
軟件編程
軟件程序主要包括:下位機數據采集程序、上位機可視化界面程序、單片機與PC串口通信程序。單片機采用C51語言編程,上位機的操作顯示界面采用VC++6.0進行可視化編程。在串口通信調試過程中,借助“串口調試助手”工具,有效利用這個工具為整個系統提高效率。單片機編程
下位機單片機的數據采集通信主程序流程如圖2所示、中斷子程序如圖3所示、采集子程序如圖4所示。單片機的編程仿真調試借助WAVE2000仿真器,本系統有集成的ISP仿真調試環境。
在采集程序中,單片機的編程操作要完全符合AD678的時序規范要求,在實際開發中,要不斷加以調試。最后將下位機調試成功而生成的.bin文件固化到AT89S51的Flash單元中。
人機界面編程
打開VC++6.0,建立一個基于對話框的MFC應用程序,串口通信采用MSComm控件來實現。其他操作此處不贅述,編程實現一個良好的人機界面。數字直流電壓表的操作界面如圖5所示。運行VC++6.0編程實現的Windows程序,整個樣機功能得以實現。
功能結果
論文關鍵詞:電表,反常規用法
電表的反常規用法是近幾年高考的熱點問題,相對學生來講也恰恰是一個難點問題。電表的反常規用法一般有這么兩種設計方案,其一就是用電流表來測電壓,題目里往往把已知確定阻值的電流表當作電壓表使用或把一個電流表和一個定值電阻改裝為電壓表適用;其二就是用電壓表來測電流,解題時需要把確定阻值的電壓表當作電流表使用。
例1、現有一塊靈敏電流表 ,量程為200,內阻約為1000,要精確測出其內阻R1教育學論文教育論文,提供的器材有:
電流表 (量程為1mA,內阻R2=50);電壓表(量程為3V,內阻RV約為3k);
滑動變阻器R(阻值范圍為0~20);定值電阻R0(阻值R0=100);
電源E(電動勢約為4.5V,內阻很小);單刀單擲開關S一個,導線若干。
(1)請將上述器材全部用上,設計出合理的便于多次測量的實驗電路圖,并保證各電表的示數超過其量程的1/3,將電路圖畫在圖示的虛框內。
(2)在所測量的數據中選一組,用測量量和已知量來計算 表的內阻,表達式為R1=I2(R0+R2)/I1,表達式中各符號表示的意義是I1表示 表的示數,I2表示表的示數,R2表示 表的內阻,R0表示定值電阻的阻值畢業論文開題報告。
解析:此題目的本意是要考查學生對伏安法測電阻原理的掌握情況,但是該題目中所給出的電壓表量程過大,只能用于保護電路使用。因此沒有合適的電壓表可以直接利用教育學論文教育論文,這時候我們必須依照伏安法測電阻的基本原理做出適當的改進,將電流表 和定值電阻R0改裝成電壓表,題目就迎刃而解了。
例2、從下面所給出的器材中選出適當的實驗器材,設計一電路來測量電流表A1的內阻r1。要求方法簡捷,有盡可能高的測量精度,并能測得多組數據。
電流表A1(量程100mA,內阻r1約40,待測)
電流表A2(量程50,內阻r2=750); 電壓表V(量程10V,內阻r3=10k);
電阻R1(阻值約100,作保護電阻用); 滑動變阻器R2(總阻值約50)
電源E(電動勢1.5V,內阻很小);電鍵S,導線若干
(1)在虛線方框中畫出電路圖,標明所用器材的代號。
(2)若選測量數據中的一組來計算r1,寫出所用的表達式并注明式中各符號的意義。
r1=r2I2/ I1 其中I1和I2分別表示A1和 A2的電流。
解析:本題給出了電壓表和電流表,若采用下圖所示的電路進行測量時教育學論文教育論文,電壓表的示數不到滿量程的1/20,測量值不準確,因為電表的示數沒有接近量程的一半或一半以上。
因此,用上圖所示的電路不能較準確的測量A1的內阻。這時候我們可以把已知電阻的電流表A2當做電壓表來使用,電流表A2兩端的電壓可以由其示數和內阻推算出來,A2兩端的電壓也就是A1兩端的電壓,這樣就可以較準確的測量出A1的內阻了畢業論文開題報告。
例3、使用以下器材測量一待測電阻Rx的阻值(900-1000)。電源E,具有一定內阻,電動勢約為9.0V;電壓表V1,量程為1.5V,內阻r1=750;電壓表V2,量程為5V,內阻r2=2500;滑動變阻器R,最大阻值約為100;單刀單擲開關K,導線若干。
(1)測量中要求電壓表的讀數不小于其量程的1/3,試畫出測量電阻Rx的一種實驗電路原理圖。
或
(2)若電壓表V1的讀數用U1表示,電壓表V2的讀數用U2表示教育學論文教育論文,則由已知量和測得量表示Rx的公式為Rx= U1r1 r2/( U2 r1—U1 r2)或(U2—U1 )r1/U1
解析:該題目還是測未知電阻Rx的阻值的,顯然本題目并沒有給出電流表,我們不難發現本題里面已知兩個電壓表,而且電壓表的內阻都是已知的,用電壓表的讀數除以本身的內阻就可得到通過自身的電流了,因此,我們完全可以把電壓表當電流表來使用。
總而言之,類似的實驗都是考查伏安法測電阻的基本原理,只要實驗目的明確,充分利用題目所給出的器材,不難找出解題思路。
(作者信息:吳志民 1980.06 男 漢 甘肅 中學一級 理學學士 課堂教學及課堂互動研究)
論文關鍵詞:初中測量電阻的幾種常用方法
測量電阻是初中物理教學的最重要的實驗之一,也是考察學生能力的重要命題熱點之一。通過近幾年中考試題我們就會發現,測量電阻方法多種多樣,其應用的原理和計算方法也不盡相同,而電路圖的設計更是靈活多變,如果學生對該部分知識不加以總結、消化的話,就會在做題時容易出錯、造成不必要的丟分現象,因此電阻的測量看似簡單,實則在教學中常常是學生的弱點,在各種考試中通過對電阻的測量的考察也可以反映出學生對電學基本知識掌握的情況,另外命題者還在不斷的推陳出新,用不同的形式對學生進行考察。下面我們就對初中測量電阻的幾種常用方法進行一個簡單的總結,希望對同學們能有所幫助。
一、初中最基本的測電阻的方法
(1)伏安法測電阻
伏安法測電阻就是用一個電壓表和一個電流表來測待測電阻,因為電壓表也叫伏特表物理論文,電流表也叫安培表,因此,用電壓表和電流表測電阻的方法就叫伏安法測電阻。它的具體方法是:用電流表測量出通過待測電阻Rx的電流I,用電壓表測出待測電阻Rx兩端的電壓U,則可以根據歐姆定律的變形公式R=U/I求出待測電阻的阻值RX。最簡單的伏安法測電阻電路設計如圖1所示,
用圖1的方法雖然簡單,也能測出電阻,但是由于只能測一次,因此實驗誤差較大,為了使測量更準確,實驗時我們可以把圖1進行改進,在電路中加入滑動變阻器,增加滑動變阻器的目的是用滑動變阻器來調節待測電阻兩端的電壓,這樣我們就可以進行多次測量求出平均值以減小實驗誤差,改進后的電路設計如圖2所示雜志網。伏安法測電阻所遵循的測量原理是歐姆定律,在試驗中,滑動變阻器每改變一次位置,就要記一次對應的電壓表和電流表的示數,計算一次待測電阻Rx的值。多次測量取平均值,一般測三次。
(2)伏阻法測電阻
伏阻法測電阻是指用電壓表和已知電阻R0測未知電阻Rx的方法。其原理是歐姆定律和串聯電路中的電流關系,如圖3就是伏歐法測電阻的電路圖,在圖3中,先把電壓表并聯接在已知電阻R0的兩端,記下此時電壓表的示數U1;然后再把電壓表并聯接在未知電阻Rx的兩端,記下此時電壓表的示數U2。根據串聯電路中電流處處相等以及歐姆定律的知識有:
I1=I2
即:U1/R0=U2/RX
所以:
另外,如果將單刀雙擲開關引入試題,伏阻法測電阻的電路還有圖4、圖5的接法,和圖3比較,圖4、圖5的電路設計操作簡單物理論文,比如,我們可以采用如圖5的電路圖。當開關擲向1時,電壓表測量的是R0兩端的電壓U0;當開關擲向2時,電壓表測量的是RX兩端的電壓Ux。故有:。同學們可以試一試按圖4計算出Rx的值。
(3)安阻法測電阻
安阻法測電阻是指用電流表和已知電阻R0測未知電阻Rx的方法。其原理是歐姆定律和并聯電路中的電壓關系,如圖6是安阻法測電阻的電路圖,在圖6中,我們先把電流表跟已知電阻R0串聯,測出通過R0的電流I1;然后再把電流表跟未知電阻Rx串聯,測出通過Rx的電流I2。然后根據并聯電路中各支路兩端的電壓相等以及歐姆定律的知識有:
U0=UX
即:I1R0=I2RX
所以:
顯然,如果按圖6的方法試驗,我們就需要采用兩次接線,可能有的同學怕多次拆連麻煩的話,那我們還可以將單刀雙擲開關引入電路圖,這時我們可以采用如圖7的電路設計。當開關擲向1時,電壓表測量的是R0兩端的電流I0;當開關擲向2時,電壓表測量的是RX兩端的電流Ix雜志網。通過計算就有:。
以上三種測電阻的方法是最簡單的測電阻方法,也是必須掌握的方法,大家會嗎,除此以外,還有常用的易于學生理解的測電阻的常用方法嗎?當然還有:
二、特殊方法測電阻
(1)用電壓表和滑動變阻器測量待測電阻的阻值
或者
用電壓表和滑動變阻器測量待測電阻的阻值,我們也可以采取以下方法:
1.如圖8所示,當滑動變阻器的滑片滑至b端時,用電壓表測量出Rx兩端的電壓Ux,當滑動變阻器的滑片滑至a端時,用電壓表測量出電源的電壓U,根據串聯電路的電流關系以及分壓原理我們可以得到:。
2.如圖9所示,當滑動變阻器的滑片滑至b端時,用電壓表測量出電源的電壓U,當滑動變阻器的滑片滑至a端時物理論文,用電壓表測量出Rx兩端的電壓Ux,根據串聯電路的電流關系以及分壓原理我們可以得到:
(2)用電流表和滑動變阻器測量待測電阻的阻值
如圖10所示,當滑動變阻器的滑片滑至b端時,用電流表測量出Rx和R滑串聯時的電流I1,當滑動變阻器的滑片滑至a端時,用電流表測量出Rx單獨接入電路時的電流I2,因為電源電壓不變,可以得到:,故有:。
(3)用等效法測量電阻
如圖11所示電路就是用等效法測量電阻的一種實驗電路。其中Rx是待測電阻,R是電阻箱(其最大電阻值大于Rx)。其實驗步驟簡單操作如下:
把開關S閉向2,讀出電流表的數值I,再把S閉向1,調節電阻箱,使電流表的讀數仍為I不變,則讀出電阻箱的數值,即為待測電阻Rx的值。
以上就是初中常見的測電阻的方法,大家會嗎,希望以上總結對大家的學習有所幫助。