時間:2022-02-21 22:21:06
序論:在您撰寫化學發展論文時,參考他人的優秀作品可以開闊視野,小編為您整理的7篇范文,希望這些建議能夠激發您的創作熱情,引導您走向新的創作高度。
化學計量學(Chemometrics)在我國發展已有20多年的歷史,是一門化學與統計學、數學、計算機科學交叉所產生的新興的化學學科分支。它運用數學、統計學、計算機科學以及其他相關學科的理論與方法,優化化學量測過程,并從化學量測數據中最大限度地提取有用的化學信息[1]。它與基于量子化學的計算化學(ComputationalChemistry)的不同之點只在于化學計量學是以化學量測量為其基點,實質上是化學量測的基礎理論與方法學[2]。
由于“”的影響,使我國在化學計量學的發展方面略遲于歐美,但在化學界前輩的積極倡導和國家自然科學基金委的支持下,80年代以來,我國的化學計量學研究得到了飛速發展,到現在已發展成為一門在國際上有一定影響的獨立的化學學科分支,已出版了多本化學計量學方面的專著和相應的教材[3],并在中國科學院的多個研究所和國內多個知名大專院校建立了隊伍穩定的化學計量學研究小組,取得了一批具有國際先進水平的成果。8年前,我們曾在第二屆斯堪的那維亞國際化學計量學大會上對我國的化學計量學發展主要成果進行過一次綜論[4],在此,僅就近10年來化學計量學在我國的發展情況作出簡要介紹。
化學計量學為化學量測提供理論和方法,為各類波譜及化學量測數據的解析,為化學化工過程的機理研究和優化提供新途徑,它涵蓋了化學量測的全過程,包括采樣理論與方法、試驗設計與化學化工過程優化控制、化學信號處理、分析信號的校正與分辨、化學模式識別、化學過程和化學量測過程的計算機模擬、化學定量構效關系、化學數據庫、人工智能與化學專家系統等,是一門內涵相當豐富的化學學科分支?;瘜W計量學的發展為化學各分支學科、其別是分析化學、環境化學、藥物化學、有機化學、化學工程等,提供了不少解決問題的新思路、新途徑和新方法。
化學計量學發展成為化學與分析化學學科的一個獨特分支。兩個重要的條件與因素推動了這方面的發展。首先,化學與分析化學中大量涌現的現代化學量測儀器,使化學與分析化學家比以往任何時侯都更容易獲得大量化學量測數據。這種情況,在過去是難以想象的。到20世紀80年代,在分析測試或化學量測中,人們第一次發現,取得數據甚至大量數據已不是最困難的一步。最難解決的瓶頸問題是這些數據的解析及如何從中提取所需的有用化學信息?;瘜W家與分析化學家首次遇到類似行為科學家或經濟學家所遇到的大量數據如何處理的問題?;瘜W家與分析化學家比較幸運。因為大量現代分析測試儀器出現帶來“數據爆炸時代”,也正是計算機普及的時代。這就構成了化學計量學發展的第二個條件。為了對極為復雜的化學量測數據(其中負載著在分子水平上表征物質世界的信息)進行解析,化學家、分析化學家利用可在計算機上實現的許多強有力的數學方法,包括一些相關學科發展的數據與信號處理新方法,從多維化學量測數據中提取有用的相關化學信息。如果說經典分析化學是得首先依賴費時而麻煩的化學或物理的方法來對很多復雜化學體系進行純組分分離,即采用單變量校正方法進行定性定量分析的話,那么,現代分析化學家面對的則是各種將分析分離技術集于一體的高維儀器所產生的巨量分析信號,藉化學計量學發展的新型分析信號的多元校正與分辨方法[5]來進行復雜多組分體系的定性定量解析,高維數據解析的化學計量學方法現已進入可用來解決分析化學中實際難題的程度,將這些方法用于復雜環境樣本、中草藥中單位藥及復方分析等[6],取得了很多令人振奮的結果。繼續進行高維數據、特別是針對可產生三維數據的新型儀器的化學計量學算法的研究現仍是一個研究的熱點,我國的化學計量學研究在此方面取得了居于國際先進水平的成果[7]。多元校正與分辨一直就是分析化學計量學研究的主要內容,在此方面,中國科技大學、清華大學、石油化工科學研究院、沈陽藥科大學、中國藥科大學、同濟大學、天津大學、廈門大學、蘭州大學、江西大學、西北大學、華中理工大學、湖南大學等單位做了大量的研究工作[8]。將化學計量學方法固化于新設計的分析儀器之中,以構建新型智能分析儀器,是一個值得繼續研究的方向。另一方面,由于近年來計算機科學及信息科學的長足發展,它們的發展也為化學計量學注入了新鮮血液,我國在分析信號處理新方法,其別是小波分析(waveletanalysis)的引入,為分析信號的壓縮、去噪、分辨及背景消除等帶來新思路和新方法,從對近年來在此方面的綜述來看,可以說,我國在小波分析用于分析信號處理研究的方面是處于國際先進水平的,中國科技大學、中山大學、香港理工大學等單位的化學計量學研究小組在此方面作出了大量有水平的研究[9]。另外,有關人工神經網絡(artificialneuralnetworks,ANN)[10]新技術、基于自然計算的全局最優算法如模擬退火(simulatedannealing,SA)和遺傳算法(geneticalgorithm,GA)[11],信息科學中的圖象分析(imageanalysis,IA)方法,統計學中研究熱烈的穩健方法(robustmethods,RM)[12]等新型化學計量學方法的引入也取得很多可喜的成果。采樣理論這一重要的化學計量學研究分支,過去未引起必要的重視,近期有關研究小組如南開大學等單位倡導開展了這方面研究[13]。
化學模式識別的研究提供的是對決策和過程優化很有實用價值的信息,為我國石油化工、材料化學等帶來了解決研究難題的新思路,人工神經網絡的新方法,為化學模式識別提供了研究的新機遇。無論在化學模式識別的方法和應用方面,我國都取得了不少優秀成果,中國科學院上海冶金研究所的化學計量學研究小組先后用化學模式識別的方法成功地解決了50多個石油化工過程優化、材料設計等方面中的實際難題?;瘜W模式識別方法用于分析化學、物理化學、無機化學、藥物化學、食品化學、農業化學、醫藥化學和環境化學等學科的研究在我國也取得了不少成果,浙江大學、中國科技大學、沈陽藥科大學、中國藥科大學、同濟大學、中國科學院長春應用化學研究所、湖南大學等單位在此方面做了大量工作[14]。
化學定量構效關系(QSAR)的研究,是一個涉及到化學學科的一個帶根本性的問題,即如何從物質的化學成分與結構來定量預測其化學特性,也可以說是理論化學研究中的一個最重要目標。目前,由于藥學發展的需要,將基于量子化學計算的分子模擬與QSAR研究結合起來,為尋求有生物和藥理活性的先導化合物提供了一個新途徑,我國在這方面也已取得引人注目的成就[15]。將全局最優算法如模擬退火和遺傳算法的引入分子力學的尋優,以指導最佳先導化合物的尋找,是化學計量學家的貢獻,現已在QSAR的研究中得到了廣泛的應用。QSAR通過直接研究可量測化學量及某些量化參數與化合物的某些已知化學特性之間的已知數據,采用統計回歸(多元校正)和模式識別的方法來建立一種模式,從而達到預測化合物特性的目的,建立起某些化學結構與性能的關系來指導進一步的實驗研究。目前,用ANN來進行QSAR研究頗引人注目,在模式分類與定量構效關系研究中展現了很好的應用前景。在QSAR的研究中,南開大學、北京大學、中國科學院上海藥物研究所、中國科學院化工冶金研究所、中國科學院長春應用化學研究所的化學計量學研究小組將分子模擬與QSAR研究相結合,并直接用于指導實際的藥物合成,取得了很好的研究成果[16]。在QSAR研究中,化合物結構的拓樸表征是另一個重要的課題,如何采用圖論和數值方法來表征各種化合物分子,并將所得數值結果與實際量測的化合物的物理、化學和生物學特性連接起來,也是目前化學計量學研究的一個重要問題。我國的化學計量學研究工作者在此方面也做了不少有意義的工作[17]。
波譜化學是分析化學與有機化學家都十分關注的一個領域,怎樣利用現存波譜數據庫,如質譜、紅外光譜、核磁共振譜、色譜的保留時間庫以及吸收與發射光譜等為復雜分析體系進行快速定性定量分析,一直是分析化學家們努力的目標;而如何利用上述各種波譜為新合成的有機化合物定結構,則是有機化學家們手中必不可少的解析手段。計算機技術,其別是智能數據庫與化學專家系統技術為此提供了進行上述解析的新途徑。我國的化學計量學工作者在此方面也做了大量富有成果的工作。中國科學院上海有機化學研究所、中國科學院大連化學物理研究所、中國科學院長春應用化學研究所、中國科學院化工冶金研究所,南開大學、南京大學、東北師范大學、廈門大學、湖南大學等單位都先后建立了多種波譜的數據庫和專家系統[18],如13CNMR譜圖數據庫和結構解析專家系統(ESESOC)、高效液相色譜專家系統、紅外、質譜數據庫與專家系統、ICP發射光譜專家系統等,他們用計算機進行各類波譜(包括核磁共振譜、質譜、紅外光譜等)模擬,并用聯合波譜庫和專家系統進行結構自動解析與推導,選擇各類儀器(色譜與光譜)的最佳量測和分離條件、進行各類波譜數據庫的知識開發,并在各類數據庫的網絡化上也做了大量工作[19]。
1997年,在國家自然科學基金委的全力支持下,由湖南大學與挪威Bergen大學合作,在張家界舉行了我國的第一次國際化學計量學會議,與會代表120多人,其中來自歐美及亞洲各地14個國家的境外代表60多人,會議的議題幾乎覆蓋了前述化學計量學研究的各個領域,還特別為化學計量學在工業中的應用開辟了一個專門議題。該會議已在國際化學計量學刊物“ChemometricsandIntelligentLaboratorySystems”出版了會議論文專輯[20],收集了44篇會議,其中我國作者占了28篇,第一次較系統地向國際化學計量學界展示了我國的化學計量學研究的實力,說明我國的化學計量學研究已與國際接軌。
化學計量學誕生至今,已有近30年歷史,其發展前景亦是一個令人關注的問題。從分析化學與化學計量學的關系可以看出,化學計量學的發展將對分析化學產生深刻影響,已構成分析化學第二層次基礎理論和方法學的重要組成部分,特別值得提出的是,化學計量學的發展還將為分析儀器的智能化提供新理論和新方法,為新型高維聯用儀器的構建提供新思路和新方法,是21世紀分析儀器軟件主體化發展的新突破口。此外,隨著微型計算機和網絡技術的飛速發展,對于化學波譜庫的建立與檢索方法以及化學人工智能和專家系統的研究也將取得長足進步。在采用計算機網絡技術將多種波譜儀器連接的基礎上,將數值化計算技術(近年來化學計量學方法學發展的主體)與傳統的基于經驗的邏輯推理方法的有機結合,可望解決化合物結構自動解析的難題,并使得長期困擾分析化學家的混合物波譜同時定性定量解析成為可能。在分析化學領域中,化學計量學的發展前景十分誘人。另外,化學計量學與其他化學學科分支,如環境化學、食品化學、農業化學、醫藥化學、化學工程等學科,將產生更密切的聯系,得到更廣泛的應用。隨著各化學分支學科的發展,可以預期,化學計量學也將繼續得到更蓬勃的發展。
參考文獻
[1]SWold.Chemometrics:whatdowemeanwithit,andwhatdowewantfromit?PaperofInCINC''''94.
[2]俞汝勤.化學計量學導論.長沙:湖南教育出版社,1991.
[3]羅旭.化學統計學基礎.沈陽:遼寧出版社,1985;俞汝勤.現代分析化學的信息理論基礎.長沙:湖南大學出版社,1987;陳念貽,許志宏,劉洪霖,徐樺,王樂柵.計算化學及其應用.上海:上海科技出版社,1987;相秉仁.計算藥學.北京:中國醫藥出版社,1990;許祿,郭傳杰.計算機化學方法及應用.北京:化學工業出版社,1990;盧佩章,張玉奎,梁鑫淼.高效液相色譜法及其專家系統.沈陽:遼寧科學技術出版社,1994;許祿.化學計量學方法.北京:科學出版社,1995;陸曉華.化學計量學.武漢:華中理工大學出版社,1997;梁逸曾.白灰黑復雜多組分分析體系及其化學計量學算法.長沙:湖南科技出版社,1997;周聲勱,梁亮,梁逸曾.合成計量學與化學化工系統優化.長沙:湖南大學出版社,1996;劉洪霖,包宏.化工冶金過程人工智能優化.北京:冶金工業出版社,1999;梁逸曾,俞汝勤.分析化學手冊(第十分冊)化學計量學.北京:化工出版社,1999.
[4]YuRQ(俞汝勤).Chemometricsinchina.Chemom.andIntell.Lab.Sys.,1992,14:15.
[5]袁洪福,陸婉珍.現代科學儀器,1998,(5):6~8;徐廣通,袁洪福,陸婉珍.現代科學儀器,1997,(3):9;ShenHL(沈海林),andLiangYZ(梁逸曾).Chemom.andIntell.Lab.Sys.,1999,45:323~328;Wanghongyan(王洪艷).TheAnalyst,1995,120;梅雨,朱仲良,李通化.計算機與應用化學,2000,17:116;方慧生,吳玉田,黃春明.計算機與應用化學,2000,17:122;方慧生,吳玉田.分析化學,1999,17:14;LiangYZ(梁逸曾),Kvalheim.OMetal.Anal.Chem.,1992,64:946~953;LiangYZ(梁逸曾),KvalheimOM.TheAnalyst,1993,118:779~790;LiangYZ(梁逸曾)etal.Anal.Chim.Acta,1993,276:425~440;XieYL(謝玉瓏),LiangYZ(梁逸曾),YuRQ(俞汝勤).Anal.Chim.Acta,1993,272:61~72.XieYL(謝玉瓏),LiangYZ(梁逸曾),YuRQ(俞汝勤).Anal.Chim.Acta,1993,281:207~218;XieYL(謝玉瓏),LiangYZ(梁逸曾),YuRQ(俞汝勤).Anal.Chim.Acta,1993,276:273~282.龔范,張林,梁逸曾,俞汝勤.化學學報,1998,56:500~506.
中國古代的神農嘗百草(《淮南子•修務訓》)使人們認識到某些植物的湯液對疾病有治療作用。這便是人類醫學科學的開端——中藥的重要起源。從中國的商代以后湯液成為中藥的主要劑型。然而,草藥雖然能夠治病,但并不能延長人的壽命。而封建王朝的最高統治者——皇希望長生不老,永遠處于統治地位。因此,自戰國以來,在中國歷代皇帝的支持下,便產生了一個長期繁榮不衰的職業——煉丹。起源于道家學派的煉丹家相信,只有自身不腐敗的藥物才能使人長生不老,青春永駐。當時,人們所用的草藥當然做不到這一點,惟有金石能充當這一角色。
我國晉代著名的道教學者、煉丹家和醫藥學家葛洪(公元284~354年)所著的《抱撲子•內篇》金丹卷中就明確記載:草木之藥“煮之則爛,埋之則腐”,而“丹砂燒之成水銀,積變又還成丹砂”。這就是說,用中草藥煉丹是不行的,因為它們容易腐爛。而朱砂加熱后可變成水銀和硫磺,反過來水銀與硫磺在冷卻的條件之下又可轉變為朱砂。因此,服用朱砂煉制的丹藥,人的生命就像朱砂與水銀能互變那樣,往返循環,生生不息。并把丹砂(HgS)稱為長生不老藥的極品。這是丹砂與水銀、硫磺進行可逆化學反應的最早的明確記錄。這一反應也是我們日常生活中的化學。例如:當水銀溫度計打碎了之后,灑落在地面的水銀容易蒸發,而以蒸汽的形式被人所呼吸,從而引起汞中毒。在這種情況下,我們通常的做法是在水銀上面撒一些硫磺,使之變為HgS,而HgS在常溫下是沒有揮發性的。有“藥王”之稱的唐代著名醫學家孫思邈(公元581~682年)也是一位非常著名的煉丹大師。他在煉丹過程中發現了黑火藥,在其著作《伏硫磺法》中記載了黑火藥的配方:兩份硝石+三份碳+一分硫。這三種物質一旦發生化學反應,就在短時間內產生大量的氣體,從而產生爆炸。這就是我國古代的四大發明之一。這一技術直到公元8世紀才傳到阿拉伯。阿拉伯人把硝石稱為“中國雪”,而波斯人(今伊朗人)則稱其為“中國鹽”。雖然煉丹家們尋找長生不老藥的夢想最終破滅,但卻在煉丹的過程中創造了很多有趣的新方法和新物質,例如淮南王劉安在組織其門客煉丹過程中偶然發現了豆腐,而被稱為豆腐的鼻祖,也把自己造就成了化學家。正因為如此,英國自然科技史專家李約瑟(1994年當選為中國科學院外籍院士),根據中國古代在煉丹術等方面的成就,在其著作《中國科學技術史》中提出了“醫藥化學源于中國”的論斷,認為“整個化學的最重要的根源之一,是地地道道從中國傳出去的”。到了16世紀初,藥物化學家的奠基者、瑞士科學家巴拉塞爾士首先把礦物質作為藥物使用,提出化學的目的是制造藥劑。他認為有病就是缺鹽、水銀和硫磺這三種要素之一(分別比作為肉體、靈魂、精神)。為了治病就要服用所缺的要素。而為了獲得能夠治療疾病的藥物,必然要進行化學實驗,因此,在這些實驗過程中,人們便發現了硝酸、鹽酸、硫酸、氨和礬等化合物,也產生了元素、化合物、化學試劑等概念,從而推動了化學的發展。
2化學的發展對醫學所做的貢獻
巴拉塞爾士作為醫學的改革者,極力反對伽侖及阿維森納的學說,并引導人們注意到化學對醫學及藥學的莫大用處。他的這種主張隨著科學的不斷發展而逐漸被證實。隨著唯物主義哲學和化學的發展,人們堅信能夠治病的這些植物中肯定存在著內在的物質基礎。結果在19世紀初,化學家們從藥用植物中尋找到了具有藥用價值的小分子有機化合物。例如:1763年,愛德華•斯通(EdwardStone)在倫敦皇家學會宣讀了題為“關于柳樹皮治愈寒顫病成功的報告”。1828年,法國藥劑師亨利•勒魯克斯(HenriLeroux)與意大利化學家拉斐爾•皮里亞(RaffaelePiria)利用化學手段從柳樹皮中提純出了其有效成分水楊酸,化學名是鄰羥基苯甲酸。1860年,德國拜爾公司化學家赫爾曼•科爾貝(HermanKolbe)成功實現了水楊酸的人工合成。但是水楊酸對口腔、食道和胃壁的黏膜有嚴重的刺激作用,從而使其在醫學應用中受到了嚴重限制。為了解決這一問題,化學家們首先想到的是將其改為酸性較小的鈉鹽(水楊酸鈉),這雖然減小了其刺激性,但卻具有令人不愉快的甜味,導致大多數患者不愿意服用。到了1893年,德國Bayer公司的化學家費利克斯•霍夫曼(FelixHoffmann)對水楊酸進行了改造,制成了乙酰水楊酸。水楊酸與乙酰水楊酸具有相同的醫學性質,但后者卻沒有令人不愉快的味道和對黏膜的高度刺激性,這就是“萬靈藥”阿司匹林。這個例子說明人們已經可以用化學的方法去改變天然產物的結構,使之成為更為理想的藥物。1928年,英國細菌學教授弗萊明發現了人類第一個抗生素藥物青霉素。雖然弗萊明發現了青霉素,但是青霉素培養液中所含青霉素的量太少,加上他化學底子比較薄弱,一直沒法找到富集濃縮青霉素的技術,很難從中提取足夠的數量供臨床研究使用。因此,弗萊明只好暫時停止了對青霉素的培養和研究工作。
直到1935年,澳洲藥理學家弗洛里和僑居英國的德國生物化學家錢恩合作解決了青霉素的富集、濃縮這個技術問題,才使得青霉素真正成為服務于人類的良藥。青霉素的大量生產挽救了千百萬患有肺炎、梅毒、猩紅熱等疾病的患者的生命。青霉素的發現被公認為是第二次世界大戰中與原子彈和雷達相并列的第三個重大發明。正是因為弗萊明、弗洛里和錢恩對改善人類健康和延長人類壽命所做出的突出貢獻,他們三人共同分享了1945年的諾貝爾生理學和醫學獎。同樣,我國的科學家們在推動醫藥學的發展和改善人類的健康方面也做出了重要的貢獻。2011年,我國藥理學家屠呦呦教授獲得了僅次于諾貝爾獎的世界級大獎——美國拉斯克-狄貝基臨床醫學研究獎(LaskerDeBakeyClinicalMedicalResearchAward),以表彰她在青蒿素(Artemisinin)的發現及將其應用于治療瘧疾方面所做出的杰出貢獻。這一醫學發展史上的重大發現,每年在全世界,挽救了數以百萬計瘧疾患者的生命。這是迄今為止中國生物醫學界獲得的世界級最高獎項。青蒿作為藥物使用,首次記載于《五十二病方》(公元前168年左右)中,這本書出土于馬王堆三號漢墓。書中詳細描述了如何用青蒿來舒緩痔瘡。在公元340年間東晉醫藥學家葛洪在其著作《肘后備急方》中,明確記載了青蒿能夠治療瘧疾:“青蒿一握,以水二升漬,絞取汁,盡服之?!蓖澜淌谡歉鶕@一段文字記載受的啟發,改變了傳統的提取方法,在經過190多次的失敗之后,于1972年11月8日從青蒿中獲得了其有效成分——青蒿素的單體。1973年,作為其結構研究的一部分,屠呦呦對青蒿素的結構進行修飾,得到了雙氫青蒿素,其藥效比青蒿素高10倍。雙氫青蒿素的合成奠定了合成其他衍生藥物的基礎。1984年初,上海有機所周維善院士課題組實現了對青蒿素的人工全合成。另外一個極為重要的例子就是哈爾濱醫科大學第一附屬醫院中醫科張亭棟教授發現As2O3可以治療M3型白血病的原創性研究。他從民間中醫中得到一個秘方:砒霜、輕粉(HgCl)和蟾蜍可用于治療淋巴結核和癌癥。而張亭棟將這個配方主要用于治療白血病的研究,并分別檢測這三種藥物在治療中的作用。通過研究,他發現其有效成分為As2O3,并于1973年在《黑龍江醫藥》上發表了As2O3用于治療白血病的開創性論文[4]。1979年,他們在《黑龍江醫藥》上再次,明確指出As2O3對M3型白血病效果最好,從而清晰地奠定了人類今天的認識:As2O3可以治療白血病,特別是M3型白血病[5]。1998年美國康奈爾醫學院的Soignet教授將張亭棟的研究結果用于臨床治療并將其治療結果和可能的作用機制發表于世界最權威之一的醫學雜志《新英格蘭醫學雜志》,從而導致了國際醫學界廣泛接受As2O3對M3型白血病的治療作用。而且相關藥品已經通過美國FDA批準正式上市。
此外,醫藥史上具有里程碑意義的藥物還有很多。例如1908年德國科學家埃爾利希課題組從合成的上千種含砷化合物中篩選出能夠用于治療梅毒的化學藥物——砷凡納明,從而開啟了化學合成藥物治療的時代;1911年,波蘭化學家CasmirFank在谷物中發現了維生素B1,并且發現缺乏維生素B1會患腳氣病,隨后新的維生素被不斷地分離純化并進行了結構的鑒定,使人們認識到維生素缺乏與疾病的關系;1932年德國生物化學家多馬克發現的第一個磺胺類抗菌藥——百浪多息;1963年美國化學家瓦尼(M.C.Wani)和沃爾(MonreE.Wall)從紅豆杉中分離到了抗癌活性成分——紫杉醇(taxol)等等,這些重要藥物的發現無不與化學的分離和確定結構的技術有關,見證了化學對醫學的深遠影響和重大作用?;瘜W手段已經成為醫學研究的一個非常重要的技術支撐。如可以用先進的化學手段來測定基因的結構、基因的序列,還可以利用化學手段去改變基因的結構,在基因上連接一個小分子或通過基因的對接來改良基因、甚至創造出新的基因。例如我們現在所見的一些轉基因的食品——大豆和玉米等都是通過基因的改變來實現的。這些成就將為人類抵抗遺傳性疾病及惡性腫瘤等現階段無法治療的疾病提供一種可能的方法。生命過程是無數化學變化的綜合體現。盡管關于生命起源的學說很多,但是得到現在科學實驗強有力支持的就只有“化學進化學說”,即生命是化學反應的產物。1952年,美國科學家StanleyMiller在實驗室中模擬原始地球的大氣成分和電閃雷鳴的自然環境,將甲烷、氨氣、氫氣、水蒸氣等置于密閉的容器中,進行持續一周的活化放電,得到了氨基酸——這一組成生命不可缺少的蛋白質原料。而且在1965年9月17日,以鈕經義為首的我國科學家用無生命的簡單有機化合物合成了具有生命活性的結晶牛胰島素,這一成果為人類做出了劃時代的貢獻。這些研究結果為生命起源的化學進化學說提供了有力的實驗支持。美國著名的有機化學家,哈佛大學E.J.Corry教授(1990年諾貝爾獎獲得者)曾經預言:“21世紀,化學將涵蓋醫學與化學之間的任一事情。”這一預言很快就被美國斯坦福大學醫學院醫學教授科恩伯格所證實,科恩伯格于2001年首次在分子水平上展示了真核的轉錄過程,并因此榮獲了2006年諾貝爾化學獎。這里我們應該要特別注意的是,科恩伯格是位醫學教授,但他卻榮獲了化學獎。
3化學對醫學貢獻的未來展望
五大特點是
(1)化學家對物質的認識和研究,從宏觀向微觀深入。20世紀以來,化學家已用實驗打開原子大門,深入地了解原子內部的情況,并且用量子理論探討原子內的電子排布、能量變化等。就是對復雜的化學反應來說,也可以測量反應機理,了解反應過渡態的情況以及分子、原子間能量的交換。
(2)從定性和半定量化向高度定量化深入。雖然近代化學也曾廣泛地使用各種定量化工具,但是還只能說停留在定性和半定量化水平。本世紀60年代后,電子計算機大規模地引進化學領域,用它來計算分子結構已取得巨大的成功。如今任何化學論文如無詳盡的定量數據就難以發表,發表了也難取得公認。而且如今化學實驗的精密度愈來愈高,幾乎所有儀器都是定量化的,有的還用電子計算機來控制。
(3)對物質的研究從靜態向動態伸展。近代化學對物質的研究基本上停留在靜態的水平或從靜態出發,推出一些動態情況。例如,從熱力學定律出發,通過狀態函數的變化,從始態及終態情況推斷反應變化中一些可能情況?,F代化學已擺脫這種間接研究推理,而采用直接的方法去了解或描述動態情況,特別是激光技術、同位素技術、微微秒技術、分子束技術在現代化學里的大規模應用?;瘜W家目前已能了解皮秒內微粒運動的情況,反應中化學鍵的斷裂以及能量交換等情況。特別值得一提的是有關動態薛定諤方程的研究,一旦成功它將會為動態研究開辟光輝前景。
(4)由描述向推理或設計深化。近代化學幾乎全憑經驗,主要通過實驗來了解和闡述物質。雖然也有一些理論如溶液理論、結構理論等可以指示研究方向,但總體來說近代化學基本上是描述性的。原來化學中四大學科(無機化學、有機化學、分析化學、物理化學)彼此存在很大獨立性。然而現代化學已打破傳統的界限,化學不僅自身各學科相互滲透,而且跟物理、生物、數學、醫學等學科相互交融和滲透。特別是近年量子化學的發展,已滲透到各學科,使化學擺脫歷史傳統,可以預先預測和推理,然后用實驗來驗證或合成。例如,當今許多高難度的合成工作都事先根據理論設計,然后決定合成路線。著名的維生素B12的合成工作就是一個典范,它標志著化學已從描述向設計飛躍。
(5)向研究分子群深入。近代化學對化學的研究通常只停留在一個或幾個分子間的作用。即所謂0級、1級、2級、3級反應,對多分子的反應是無能為力的。但是近代化學遠遠不能滿足實際需要了,特別是研究生物體內的化學反應,就要研究多個分子甚至一大群分子間的反應了。例如,一個活細胞內往往需要幾十種酶作催化劑,同時催化許多化學反應。因此研究分子群關系,已成為現代化學的一個特點。
現代化學的發展方向,一是化學向分子設計方向前進。分子設計就是說化學家像建筑師造房子那樣設計好再建造。由于電子計算機、各種能譜技術、微微秒技術、激光技術、同位素技術等在化學上的應用,使分子設計逐漸趨向現實。上面說過的著名有機合成大師伍德沃德合成難度極大的維生素B12,就是按他創立的前沿軌道理論出發,計算后設計出最佳合成路線和原料配比,一舉成功并傳為佳話。目前全世界每年合成幾千種抗癌藥,大都是先設計好合成路線,而后進入生產的。
關鍵詞:化學灌漿無公害環氧樹脂聚氨酯丙烯酸鹽酸性水玻璃化學灌漿泵
1我國化學灌漿技術發展成績
化學灌漿(ChemicalGrouting)是將一定的化學材料(無機或有機材料)配制成真溶液,用化學灌漿泵等壓送設備將其灌入地層或縫隙內,使其擴散、膠凝或固化,以增加地層強度、降低地層滲透性、防止地層變形和進行混凝土建筑物裂縫修補的一項地基處理和混凝土修補技術.即化學灌漿是化學與工程相結合,應用化學科學和化學漿材解決地基和混凝土缺陷處理(加固補強、防滲堵漏),保證工程的順利進行或借以提高工程質量的一項工程技術.隨著化學灌漿技術的發展和進步,現己成為現代工程中頗具特色且不可或缺的一項先進技術
國外化學灌漿最初是適應于地基處理和采礦業發展的需求而發展起來的,其可靠性得到公認并被廣泛采用至今己有80年以上的歷史.我國的化學灌漿技術應用與研究起步較晚,但發展較快并有自已的獨創.如果以1953年在佳木斯等地采用堿性水玻璃進行化學灌漿算起,也才只有50年的歷史五十年來,我國在化學灌漿技術這個小領域取得了成績[3],主要表現在以下方面:
(1)化學灌漿從無到有,從小到大發展起來,已成為我國現代工程技術不可或缺的一個組成部分
(2)國外有的常用化學灌漿漿材品種,我國基本上都已開發出來(如環氧[1]、甲凝、丙凝、丙烯酸鹽、酸性和堿性水玻璃、水溶性、非水溶性和彈性聚氨酯、脲醛樹脂、鉻木素等)
(3)化學灌漿漿材品種開發中還有一些獨創.如甲凝、彈性聚氨酯,甲氰凝和環氧—聚氨酯,丙烯酸酯—聚氨酯等互穿網絡灌漿材料
(4)化學灌漿設備的研制開發已基本能適應和滿足國內化灌工程的要求[8].如化學灌漿泵、灌漿阻塞器、密閉配輸漿裝置和各種封縫材料等.
(5)化學灌漿技術已在國內水電(大壩、堤防、水庫、電站)、建筑(地上、地下、人防)、交通(公路、鐵路、隧道、橋梁、港口、機場)和采礦等四大部門得到推廣應用
(6)化學灌漿技術應用已解決了許多工程難題,取得良好的效益.以水利為例,如三峽[4]、葛洲壩、龍羊峽、丹江口、陳村、鳳灘、萬安等水利樞紐都是采用化學灌漿技術解決一些工程技術難題的典型例子
(7)化學灌漿已從工程完建后的應用,發展到工程興建前設計中就采用.如三峽化灌帷幕預計15000米,化灌加固地基預計3000米
(8)化學灌漿技術在一些方面已具國際先進水平,如青海龍羊峽大壩采用中化798環氧漿材處理G4偉晶巖劈裂帶和三峽大壩采用CW環氧漿材處理F1096軟弱夾層及斷層破碎帶的水泥—化學復合灌漿技術均堪稱國際上處理低滲透性軟弱巖土地層的先進技術
(9)化學灌漿理論上也有一些突破和創新[6][7].如漿液擴散半徑的計算理論、漿液濕面粘接理論、減低漿液毒性的拮抗理論、漿液吸滲理論等
(10)化學灌漿技術出版物取得豐收.自上世紀八十年代以來己出版專著十余部.包括水利學報、水利水電技術、巖土工程學報、巖石力學與工程學報、長江科學院院報在內的全國132家科技期刊都選登化學灌漿的研究論文.近5年選登的論文就有200余篇
以上十個方面成績,足以說明我國化學灌漿技術的進步和發展水平.此外,全國研究化學灌漿技術的工程科技人員已成立了中國水利學會化學灌漿分會,現掛靠在長江科學院.追溯到1968年,學會己舉行過16次學術交流活動,出版了7部論文集,這些學術活動對推動我國化學灌漿材料的研發和化學灌漿技術的發展起了很好的作用
2.化學灌漿技術近期發展展望
我國化學灌漿技術近期應在前50年的基礎上更具活力的繼續向前發展,而無公害、耐久性好、適應工程各種苛刻要求且價格低廉的化學灌漿漿材的開發、應用和推廣;化學灌漿技術的研究、改進和提高;化學灌漿設備、儀器生產的定型化、系列化、成套化、標準化和環保化及產品質量的持續改進和提高等必然是其發展方向
2.1.無公害漿材的開發
(1)無毒催化劑的研制.環氧樹脂漿材粘接強度高、穩定性好,因此是固結灌漿最常用的漿材.該漿材毒副作用主要來自所采用的固化劑和溶劑.在過去的近20年中,對環氧漿材胺類固化劑的降低毒性研究己取得一些成果,國內生產出商品名為T31、810、X-89、CD等毒副作用較低的一批改性胺類固化劑,對環氧漿材的推廣應用起了較好作用,今后還應朝這個方向繼續努力
(2)無溶劑型漿材的開發.環氧樹脂一般粘度都較大,制成化灌漿材一般都要添加有機溶劑,但很多有機溶劑不但氣味難聞,而且具有毒副作用(如糠醛),添加后往往會產生環境問題.因此,人們在研究無毒副作用環氧固化劑的同時,也展開了無溶劑型環氧漿材的研制.無溶劑型環氧漿材的研究將得益于環氧樹脂工業的發展,國內一些化工廠生產的低分子量環氧樹脂粘度僅為20-25mPa.s.,這對今后無溶劑環氧化灌漿材的發展開辟了較好的前景.除此之外,把丙烯酸酯等樹脂開發成無溶型漿材己呈現出更加美好的前景,值得努力探索
(3)水做介質的化灌漿材的研制.水做介質,不用有機溶劑,對化灌漿材的無公害化是很有益的.過去已開發了LW、HW等為數不多的水溶性聚氨酯漿材,今后對水溶性漿材應放開視野,相信在有機或無機水溶性漿材開發和應用上將會呈現出較為理想的進展
(4)某些已有漿材改造的研究.1974年,日本曾因使用抗滲性好的丙凝化灌漿材污染水質,引起飲水中毒事件而宣布禁用丙凝.之后,具有丙凝相似性能的丙烯酸鹽漿材得到發展,但其主要成分丙烯酸鎂仍存在一定的毒副作用,而科技工作者采用拮抗原理,在丙烯酸鹽漿材中加入鈣鹽和適量的某種拮抗劑,卻使其毒副作用下降到僅為丙凝的1%,成為實際無毒漿材[12].這個例子說明,我們可以探索通過對己有的某些化灌漿材進行改造,降低毒性,達到可使用標準
2.2.對工程各種苛刻要求相適應的漿材開發
(1)新型高親潤、高滲透性化灌漿材的研究.雖然目前我們已有了一些高滲性的化灌漿材,解決了不少工程難題,但所用溶劑和固化劑多半都有毒副作用,不適宜環境標準,對工程地基微細裂隙、斷層破碎帶和泥化夾層及混凝土微細裂隙的處理仍有探索新型高親潤、高滲透性、無毒副作用化灌漿材的必要.這很大程度取決于表面活性劑和活性稀釋劑體系的研究改進
(2)彈性化灌漿材的開發.在工程伸縮縫止水和混凝土活縫、變形縫補強灌漿中需要具有彈性的化灌漿材.過去雖說也有一些開發,但必竟質量還不夠高.今后除應加強對已有彈性環氧和彈性聚氨酯等漿材提高質量和消除毒副作用方面的研究外,更為重要的則是加強對能賦于環氧樹脂彈性的固化劑的開發研究[11],從而適應建設工程之急需
(3)快速固結漿材的開發.這里指的是漿液粘度又低,固化物性能優異,且固化時間可控制在幾十分鐘或幾小時以內的漿材的開發.采用低粘度環氧樹脂或新型活性稀釋劑和開發應用能促使環氧樹脂快速固化的新型環氧固化劑應能解決此課題.3.耐久性漿材的開發
耐久性概念含意較廣,它包括耐水、耐酸堿、耐候、耐紫外光、耐凍融和干濕循環、耐磨蝕、耐微生物作用(霉)等方面,耐久性漿材的開發可從以下幾個方面去探索
(1)通過對合成樹脂的接枝或相嵌共聚合反應,使化灌漿材中所采用的樹脂具備我們所要求的一些耐久性特性
(2)注重互穿網絡復合化灌漿材的研究.如己有的MU無溶劑漿材系丙烯酸酯--聚氨酯的復合[2]、PU/EP水下化灌漿材系聚氨酯—環氧樹脂的復合[10],他們都是互穿網絡復合化灌漿材.由于兩類樹脂復合及其互穿網絡結構,這就賦予他們超越任何單一樹脂組份的優良性能,值得深入研究
(3)加入鈉米材料對己有漿材進行改性.環氧樹脂加進納米材料改性的化灌漿材研究項目已獲得水利部基金資助,從現己拿出的初步成果來看,該項研究將會提升環氧漿材包括耐久性在內的多方面性能
2.4.價格低廉的漿材開發
(1)水玻璃漿材的改性.水玻璃漿材是化學灌漿史上最早使用的化學灌漿漿材,同時也是目前使用最廣泛的化學灌漿漿材之一.究其原因除該漿材具有無毒、粘度小、可灌性好等優點外漿材價格較低是個重要因素.該漿材不足處為凝膠時間調節不夠穩定、凝膠強度很低和凝膠穩定性較差,金屬離子易脫溶等,現多半用在臨時或半永久工程中.因此今后對其改性工作應著重在提高強度和耐久性方面做研究.加入某些活性物質進行改性是值得探索的方向
(2)紙漿廢液的無害化漿材開發.紙漿廢液做成化灌漿材價格較低.將該廢液中加鉻類催化劑便可制得現稱為鉻木素的該漿材.因鉻類催化劑中六價鉻離子有毒,該漿材大家不敢用.故隨后開發出多種無鉻催化劑的高強木素漿材,今后應對其進行提高性能研究,以便推廣應用
以上四條主要集中在無公害、多用途和耐久性漿材研究、開發上,至于漿材的定型化、系列化、標準化當然是化灌技術發展的必然要求,這里就不贅述
2.5.化灌技術的改進、提高和創新
已有化灌技術的總結、改進和提高研究.前已敘述了在過去的50年中,我國有包括水電等大量的建設工程應用過化學灌漿技術,有許多采用化灌解決工程難題的典型經驗,其中有些已有初步總結,如復合灌漿技術等;有些則尚待總結,如化灌的密閉傳輸、自動記錄、集中管理和實時監控技術等.不管過去有無總結,現有的化灌技術都需要從事化灌技術研究的專家、學者與有經驗的工程技術人員相結合,在總結實踐經驗的基礎上改進、提高,并能有所創新
2.6.化灌設備儀器的系列化、成套化、標準化和環保化
(1)高性能化學灌漿泵的系列化、成套化和標準化.高性能化學灌漿泵是實施化灌作業的主要設備,國內有多家研究所和小企業能研制和開發,但都只能小批量生產或試生產.今后應定點、定型生產,并向產品的系列化、成套化、標準化方向發展,以方便推廣應用化灌技術
(2)化學灌漿自記儀的研制.化學灌漿自記儀的研制可有效地避免人工記錄難免出現的一些差錯,將對提高隱蔽工程中的化學灌漿質量起到很好的監控作用,并使化灌數據分析建立在可靠的基礎之上.化學灌漿自記儀在技術原理上與己有的水泥灌漿自記儀有所不同,目前國內已有幾套研制方案,但還未見樣品問世,很需要加快研制步伐,以應工程化灌監理之急需
(3)密閉式傳輸漿設備的研制.現己研制出的一些設備要滿足環境標準要求,保證安全生產
(4)現有產品提高質量研究.國內生產的一些化學灌漿設備儀器在加工精度和質量上與國外同類型產品還有一定差距.因此,在這方面我們會有大量改進和提高工作需要去做
2.7.化學灌漿行業標準、規程、規范的制訂
化灌施工具有隱蔽性特徵,各行其道搞施工必將出現很多問題,甚至會形成工程隱患,值得我們高度警惕.然而我國至今還沒有一部全國性行業標準和化灌施工規程、規范,這是很不正常的現象,應立即著手進行制訂.希望政府相關部門能給于大力支持
運用化學實驗,通過一系列有效的方法和手段,能夠較好地發展學生的智能。
一、改驗證性實驗為探索性實驗,用“探索法”組織教材和教學
通常情況下,學生實驗都是安排在講完新課后進行的,而且大多是讓學生重復教師課堂上演示過的實驗。這樣的實驗只是起到鞏固書本知識和訓練操作技能的作用,屬于驗證性實驗。它有如下弊端:(一)不利于調動學生的積極性,甚至挫傷了學生的探索積極性。(二)驗證性實驗的一切現象和結論都是學生已知的。嚴格的操作程序和方法把學生的智慧、手腳束縛得死死的,不利于發展智力、培養能力。(三)不利于培養學生實事求是、嚴肅認真的科學態度?!胺凑龝系慕Y論是正確的,做不做一回事。”“如果實驗事實與書上有矛盾,照書上寫的填不會錯?!边@些想法反映了學生們的惰性和無可奈何。
與驗證性實驗相反,探索性實驗具有明顯的優越性。(一)實驗前學生不知道實驗的現象和結果,這就要求他們認真、正確地操作,仔細敏捷地觀察,忠誠老實地記錄。誰不認真誰就不能獲得正確的結論,這有利于培養他們科學實驗的基本品格。(二)有利于發展智力,培養能力。化學實驗的現象總是多方面的,而這些復雜的現象又是人們認識物質變化的向導。探索性實驗不僅要求有一定的操作能力、觀察能力,還要求把觀察實驗的過程和抽象思維的過程結合起來,要求有“去粗取精、去偽存真、由此及彼、由表及里”的分析方法,通過宏觀現象,認識到微觀世界的本質變化,把感性認識上升到理性高度。
“探索法”的教學過程,不是簡單地、直接地讓學生去掌握前人的科學結論,而是要引導學生“像以前的科學家”那樣,通過實驗探索規律、發現真理。例如,我在講二氧化碳的實驗室制法時,事先準備了如下幾組實驗:(一)碳酸鈉與稀鹽酸反應;(二)純碳酸鈣粉末與稀鹽酸反應;(三)石灰石與稀鹽酸反應;(四)石灰石與濃鹽酸反應;(五)石灰石與稀硫酸反應。讓五名學生到前面來依次分別做這五個實驗,然后讓同學們共同討論:在實驗室條件下制取二氧化碳選用哪組實驗最合適?為什么?在經過討論和爭論之后,同學們得出共同的結論:實驗室應用石灰石(或大理石)跟稀鹽酸反應制取二氧化碳最適合。從而不僅使學生們牢固地掌握了二氧化碳的實驗室制法,而且也使學生們學會了對比實驗和優化實驗的方法。
二、靈活變通各種實驗,加強實驗教學
化學實驗是最直觀的教學手段,它模擬人類認識事物的實踐過程,符合人類認識客觀事物的自然規律,因而最大限度地利用實驗教學是化學教學最成功的教學手段。另一方面,讓學生自己動手做實驗則是培養學生能力的最有效的途徑。為了更有效地加強實驗教學,我把教材規定的實驗做了如下的改進和變通。
(一)演示實驗本來是由教師在課堂上做并指導學生觀察的實驗,在初學時,這種演示實驗必須由教師親手去做,它對于以后的學生實驗有著示范的作用。到了一定階段,在學生們做了幾個分組實驗之后,就可以最大限度地將演示實驗轉化為學生在教師指導下完成的演示實驗。初三學生的好奇心強,富有參與精神,很樂于自己動手做實驗,而且每次實驗的成功都給他們帶來無比的欣喜。一些學生在前面做實驗,下面的同學也仿佛自己在做實驗,全部注意力都集中在一起,使得整個課堂的教與學融為一體。動手做實驗的學生由于是在全體同學面前做實驗,注意力特別集中,收效特別好。這不僅創造和培養了他們的觀察能力、思維能力和實際操作能力,也鍛煉了他們大膽、心細、勇于表現的良好品質。
關鍵詞環境化學回顧與展望
環境化學主要研究化學物質在環境中的存在、轉化、行為和效應及其控制化學的原理和方法。它是化學科學的一個新的重要分支,也是環境科學的核心組成部分。根據國家自然科學基金委員會《自然科學學科發展戰略調研報告》的劃分,環境化學的研究主要包括環境分析化學,大氣、水體和土壤環境化學,污染生態化學,污染控制化學等四部分內容[1]。
環境化學的發展大致可分為三個階段:1970年以前為孕育階段,70年代為形成階段,80年代以后為發展階段。二次大戰以后至60年代,發達國家經濟從恢復逐步走向高速發展,由于當時只注意經濟的發展而忽視了環境保護,污染環境和危害人體健康的事件接連發生,事實促使人們開始研究和尋找污染控制途徑,力求人與自然的協調發展。60年代初,由于當時有機氯農藥污染的發現,農藥中環境殘留行為的研究就已經開始。這個階段是環境化學的孕育階段。到了70年代,為推動國際重大環境前沿性問題的研究,國際科聯1969年成立了環境問題專門委員會(SCOPE),1971年出版了第一部專著《全球環境監測》,隨后,在70年代陸續出版了一系列與化學有關的專著,這些專著在70年代環境化學研究和發展中起了重要作用。
1972年在瑞典斯德歌爾摩召開了聯合國人類環境會議,成立了聯合國環境規劃署,確立了一系列研究計劃,相繼建立了全球環境監測系統(GEMS)和國際潛在有毒化學品登記機構(IRPTC),并促進各國建立相應的環境保護結構和學術研究結構。應該說,這一系列的舉措在人類的環境保護事業中起到了里程碑作用。
80年代全面地開展了對各主要元素,尤其是生命必需元素的生物地球化學循環和各主要元素之間的相互作用,人類活動對這些循環產生的干擾和影響,以及對這些循環有重大影響的種種因素的研究;重視了化學品安全性評價;開展了全球變化研究,涉及臭氧層破壞、溫室效應等全球性環境問題。同時加強了污染控制化學的研究范圍。
1992年在巴西里約熱內盧召開的聯合國環境與發展會議(UNCED),國際科聯組織了數十個學科的國際學術機構開展環境問題研究。例如:國際純粹與應用化學聯合會(IUPAC)1989年制訂了“化學與環境”研究計劃,開展了空氣、水、土壤、生物和食品中化學品測定分析等六個專題的研究。
1991年和1993年在我國北京召開的亞洲化學大會和IUPAC會議上,環境化學均是重要議題之一。
1995年諾貝爾化學獎第一次授予三位環境化學家Crutzen,Rowland和Molina,他們首先提出平流層臭氧破壞的化學機制。Crutzen于1970年提出了NOx理論,Rowland和Molina于1974年提出了CFCs理論,這幾位化學家的實驗室模擬結果在現實環境中得到驗證。從發現平流層中氧化氮可以被紫外輻射分解而破壞全球范圍的臭氧層開始,追蹤對流層大氣中十分穩定的CFCs類化學物質擴散進入平流層的同樣歸宿,闡明了影響臭氧層厚度的化學機理,使人類可以對耗損臭氧的化學物質進行控制。這些理論的研究成果因1985年南極“臭氧洞”的發現而引起全世界的“震動”,從而導致1987年《蒙特利爾議定書》的簽訂。這充分表明環境化學家的工作已經引起全人類的重視,環境化學已經開始走向全面發展。
我國的環境化學研究也已經有了20多年的歷史,自70年代起,在典型地區環境質量評價,環境容量和環境背景值調查,污染源普查,圍繞工業“三廢”污染,在大氣、水體、土壤中環境污染物的表征、遷移轉化規律,生物效應以及控制等方面進行了大量的工作。近年來,完成了一批攻關課題和重大基金項目等國家任務?!鞍宋濉焙汀熬盼濉逼陂g,在有毒污染物環境化學行為和生態毒理效應、水體顆粒物和環境工程技術、大氣化學和光化學反應動力學、對流層臭氧化學、區域酸雨的形成和控制、天然有機物環境地球化學、有毒有機物結構效應關系、廢水無害化和資源化原理與途徑等方面的工作分別得到了國家自然科學基金、國家科技攻關、中國科學院重大重點等項目的支持,取得了一批具有創新性的研究成果,形成了一支從政府到地方各級行政管理與環境保護部門、科研單位、高等院校等多層次的管理人員與研究人員隊伍[2,3]。
在酸雨測量技術、形成機制、物理化學特征、高空云雨化學、大氣酸性污染物來源和沉降過程等方面取得重要成果,在天然源研究、區域酸沉降模式和酸雨成因、能源與環境協調規劃、酸雨區域綜合防治和臨界負荷的研究方法等方面達到國際先進水平,獲國家科技進步一等獎。
在環境分析化學方面,從80年代起,我國先后制訂出《環境監測標準方法》,《環境污染分析方法》和《環境監測分析方法》等,選取了200多種分析方法,近百種無機和有機物,所用的方法靈敏、準確、可靠,多年來在全國環境監測系統和有關實驗室廣泛應用。對監測分析方法的統一與標準化,在提高分析監測水平及實驗室質量控制方面起了重要作用。
1992~1995年,國家基金委化學部資助了重大基金項目“典型有機污染物環境化學行為與生態效應”的研究,探討了某些有毒有害污染物的環境行為、在介質中的遷移轉化規律、污染物的環境風險評價、水生天然有機物的起源、表征、與重金屬相互作用機理與模型以及鹵代烴生成潛力等。在新農藥單甲脒的環境行為和生態毒理效應以及有機錫的生態毒理效應研究中取得了創新性成果。首次發現城市水源中的硝基多環芳烴的存在,對多氯聯苯等的光解規律和產物毒性提出了新的機理和解釋。部分研究成果達到國際先進水平,該工作于1999年獲得了中國科學院自然科學一等獎。
在O3的測量技術、中國光化學煙霧特征、室內大氣光化學反應模擬、空氣質量模式、汽車尾氣高效凈化等方面取得了重大成果,其中大氣微量組分源排放、大氣氧化能力、大氣光化學模擬和模式的研究達到世界先進水平,曾獲國家科技進步二、三等獎。
在天然水質變化與水污染控制原理、難降解有毒有害污染物的物理化學去除與生物降解和高級化學氧化、水質凈化的高效生物和絮凝反應器、廢水的無害化與資源化、清潔生產等方面取得了達到國際先進水平的研究成果,獲中國科學院科技進步二等獎和國家教委科技進步二等獎等獎勵。
一、動機的培養
正確的學習動機是學習的內在動力,因而在化學教學中要經常穿插一些中國化學史和當代的化學成就,目的是激發學生的民族自豪感和愛國主義激情,讓他們感覺到學習不是為我,而是為民族和國家而學。例如講石油時介紹我國石油資源豐富,但在解放前帝國主義頃銷“洋油”,說中國是“貧油國”,解放后在黨的領導下,我國先后開發和建設了大慶、華北、中原等石油基地,甩掉了貧油國的帽子,而且每年還出口大量的石油。在講到蛋白質時,可介紹1965年我國科學家在世界上第一次用人工方法合成了具有生命活力的蛋白質——結晶牛胰島素,從而為生命的起源邁出了關鍵的一步。在教學中通過這些實例的講述,可激起學生求知欲的高漲,從而保持學習的積極態度。
二、情感的培養
情感是開發人智力的源泉。沒有情感的發展思維就不會發展;沒有持久的熱情思維就不能深化;沒有成功感和失敗感往往不能推動學生的智力發展。列寧說:“沒有人的情感就從來沒有,也不可能有人對真理的追求”。那么如何在教學中培養學生的情感呢?首先用大量化學科學觀念和知識水平。備課時精心準備教案;講課時注意表達的藝術性;實驗時注意語言科學性與形象性相結合。其次要正確對待“好、中、差”三類學生。對“好”的要嚴,“中”的要引,“差”的要補。特別是對待差生不但要熱情關懷還要循循善誘,具體幫助。這樣才能使學習集體之間以及師生之間關系的融洽,感情平衡,使學生在學習中感到輕松愉快。我校的學生,大多來自農村,素質差,以前沒有做過實驗,但經我們分門別類耐心指導,他們的成績及實驗技能進步很快。
三、興趣的培養
濃厚的學習興趣是智力發展的催化劑。因而在教學中恰當地運用教具、實驗板書、板畫模型、比喻等來描述。在教學中教師要充分發揮學科特點,在實驗上下功夫,提高實驗的藝術性,這對提高學生的學習興趣,調動學生的學習積極性和激勵學生熱愛化學可以起到良好的作用。教師在教學中可貫穿講一些化學家的故事和化學常識來激發學生的學習興趣,在講“苯”的結構時,介紹凱庫勒通過夢的啟示發現苯的環狀結構,改進課堂教學方法,講究授課的藝術。精湛的課堂教學藝術和生動有趣的語言能撥動學生的心弦,使學生聽課感到是一種藝術享受?;瘜W上常有一些概念和原理比較抽象,若采用照本宣科的方法,學生很難理解,如“電子云”。在教學中也可讓所教知識與現行的生產、生活結合起來。如講物質的穩定性,某村組農民不懂化學知識,見到NH4NO3結塊,不好施肥,就用鐵錘去砸,結果引起爆炸。講到鋁鹽明礬舉炸油條的例子,學生聽得津津有味,產生濃厚的興趣。
四、意志的培養
堅強的意志對學生會產生驚人的效果。因而在教學中要培養學生對知識勇于追求,善于探索的精神。對那些“打破砂鍋問到底”的同學要給予鼓勵,決不能扼殺他們的探索欲。教學中可講有關科學家為完成一個實驗或一個課題,往往需要幾年、幾十年的時間,有的甚至冒著生命危險,付出血的代價。如講甘油可制烈性炸藥——硝化甘油,諾貝爾為研究它,進行了幾百次試驗,幾次炸飛了實驗室,他就是冒著生命的危險,解決了硝化甘油的儲運和引爆問題。在講鐳元素時,居里夫人為尋求這種元素購進幾噸鈾礦渣,終日用一根大鐵棒在一口沸騰的大鍋中攪拌,經過四年艱辛提煉,終于獲得1克純鈾。為促進原子科學的發展作出具大的貢獻。通過這些例子培養學生為科學和真理獻身的精神。
培養學生的意志還要根據學生的特點,采取不同的措施。例如對膽小的學生,可以鼓勵他大膽做實驗,不要怕失??;對好冒失的學生要培養他的耐心細致的品質,可以教導他“欲速則不達”的道理:對于缺乏毅力的學生,應激發和培養他的堅韌精神,遇到化學難題不輕易告訴他如何解答,可讓他冥思苦想,然后才加以提示。