時間:2023-01-12 20:07:40
序論:在您撰寫有理數教案時,參考他人的優秀作品可以開闊視野,小編為您整理的7篇范文,希望這些建議能夠激發您的創作熱情,引導您走向新的創作高度。
教育是石,撞擊生命的火花。教育是燈,照亮夜行者踽踽獨行的路。教育是路,引領人類走向黎明。因為有教育,一切才都那么美好,因為有教育,人類才有無窮的希望。今天小編為大家帶來的是初一上冊數學《有理數》教案精選范文,供大家閱讀參考。
更多關于教學工作計劃的內容請點下方鏈接
三年級數學培優補差工作計劃
初中地理教學計劃精選5篇匯總
高一政治下學期教學計劃
班干部工作計劃范文
六年級安全上冊教學計劃
初一上冊數學《有理數》教案精選范文一教學目標:
知識能力:理解有理數的概念,掌握有理數的兩種分類方法,能把給出的有理數按要求分類。
過程與方法:經歷本節的學習,培養學生分類討論的觀點和正確進行分類的能力。
情感態度與價值觀:通過本課的學習,體驗成功的喜悅,保持學好數學的信心。
教學重點:掌握有理數的兩種分類方法
教學難點:會把所給的各數填入它所屬于的集合里
教學方法:問題引導法
學習方法:自主探究法
一、情境誘導
在小學我們學習了整數、分數,上一節課我們又學習了正數、負數,誰能很快的做出下面的題目。
1.有下面這些數:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33
(1)將上面的數填入下面兩個集合:正整數集合{ },負整數集合{ },填完了嗎?
(2)將上面的數填入下面兩個集合:整數集合{ },分數集合{ },填完了嗎?
把整數和分數起個名字叫有理數。(點題并板書課題)
二、自學指導
學生自學課本,對照課本找自學提綱中問題的答案;老師先做必要的板書準備,再到學生中巡視指導,并了解掌握學生自學情況,為展示歸納作準備。
附:自學提綱:
1.___________、____、_______統稱為整數,
2._______和_________統稱為分數
3.____
______統稱為有理數,
4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整數:、分數:
;正整數:、負整數:、正分數:、負分數:.
三、展示歸納
1、找有問題的學生逐題展示自學提綱中的問題答案,學生說,老師板書;
2、發動學生進行評價、補充、完善,教師根據每個題目的展示情況進行必要的講解和強調;
3、全部展示完畢后,老師對本段知識做系統梳理,關鍵點予以強調。
四、變式練習
逐題出示,先讓學生獨立完成,再請有問題的學生匯報結果,老師板書,并發動其他學生評價、補充并完善,最后老師根據需要進行重點強調。
1.整數可分為:_____、______和_______,分數可分為:_______和_________.有理數按符號不同可分為正有理數,_______和________.
2.判斷下列說法是否正確,并說明理由。
(1)有理數包括有整數和分數.
(2)0.3不是有理數.
(3)0不是有理數.
(4)一個有理數不是正數就是負數.
(5)一個有理數不是整數就是分數
3.所有的正整數組成正整數集合,所有負整數組成負整數集合,依次類推有正數集合、負數集合、整數集合、分數集合等,把下面的有理數填入它屬于的集合中(大括號內,將各數用逗號分開):
楊桂花:1.2.1有理數教學設計
正數集合:{ …} 負數集合:{ …}
正整數集合:{ … } 負分數集合:{ …}
4.下列說法正確的是(
)
A.0是最小的正整數
B.0是最小的有理數
C.0既不是整數也不是分數
D.0既不是正數也不是負數
5、下列說法正確的有(
)
(1)整數就是正整數和負整數(2)零是整數,但不是自然數(3)分數包括正分數和負分數(4)正數和負數統稱為有理數(5)一個有理數,它不是整數就是分數
五、總結與反思:通過本節課的學習,你有什么收獲?
六、作業:必做題:課本14頁:1、9題
初一上冊數學《有理數》教案精選范文二教學目標:
1、明白生活中存在著無數表示相反意義的量,能舉例說明;
2、能體會引進負數的必要性和意義,建立正數和負數的數感。
重點:通過列舉現實世界中的“相反意義的量”的例子來引進正數和負數,要求學生理解正數和負數的意義,為以后通過實例引進有理數的大小比較、加法和乘法法則打基礎。
難點:對負數的意義的理解。
教學過程:
一、知識導向:
本節課是一個從小學過渡的知識點,主要是要抓緊在數范圍上擴充,對引進“負數”這一概念的必要性及意義的理解。
二、新課拆析:
1、回顧小學中有關數的范圍及數的分類,指出小學中的“數”是為了滿足生產和生活的需要而產生發展起來的。
如:0,1,2,3,…,,
2、能讓學生舉例出更多的有關生活中表示相反意義的量,能發現事物之間存在的對立面。
如:汽車向東行駛 3千米和向西行駛2千米
溫度是零上10°C和零下5°C;
收入500元和支出237元;
水位升高1.2米和下降0.7米;
3、上面所列舉的表示相反意義量,我們也許就會發現:如果只用原來所學過的數很難區分具有相反意義的量。
一般地,對于具有相反意義的量,我們可把其中一種意義的量規定為正的,用過去學過的數表示;把與它意義相反的量規定為負的,用過去學過的數(零除外)前面放上一個“—”號來表示。
如:在表示溫度時,通常規定零上為“正”,零下為“負”即零上10°C表示為10°C,零下5°C表示為-5°C
概括:我們把這一種新數,叫做負數,如:-3,-45,…
過去學過的那些數(零除外)叫做正數,如:1,2.2…
零既不是正數,也不是負數
例:下面各數中,哪些數是正數,哪些數是負數,
1,2.3,-5.5,68,-,0,-11,+123,…
三、階梯訓練:
P18 練習:1,2,3,4。
四、知識小結:
從本節課所學的內容中,應能從數的角度來區分小學與初中的異同點,通過運用發現相反意義量,能理解引進“負數”的必要性及其意義。
五、作業鞏固:
1、每個同學分別舉出5個生活中表示相反意義量的的例子;
并用正、負數來表示;
2、分別舉出幾個正數與負數(最少6個)。
3、P20習題2.1:1題。
初一上冊數學《有理數》教案精選范文三教學目標:
1、理解有理數的概念,懂得有理數的兩種分類,及對一個有理數進行分類判別;
2、在數的分類中,應加強對負數的理解及對零在數分類中的特殊意義的理解。
重點:在引進負數后,能對已有的各種數進行概括,理解有理數的意義,及有理數的兩種不同分類的重要意義。
難點:在對有理數的認識上,應加強對負數及零的重視,明確兩者在有理數集的地位與作用。
教學過程:
一、知識導向:
通過上節課對“負數“概念的引入,通過對數范圍的補充及擴大,進一步引入了有理數的概念,并對擴大后的數的范圍進行重新分類。
二、新課拆析:
1、引例:(1)請學生說出負數的特征,并指出實例說明。
(2)以第(1)題中,學生所回答的數進一步分析,不同數的不同特點。
2、通過對“負數”的引入,從我們所接觸的數可發現有這樣幾類:
正整數:如1,2,34,…
零:0
負整數:如-1,-3,-5,…
正分數:如 …
負分數:如 -0.3,…
由此我們有:
概括:正整數、零和負整數統稱為整數;
正分數、負分數統稱為分數;
整數和分數統稱為有理數。
然后根據我們的概括,我們可以對有理數進行如下的分類
分類一: 分類二:
正整數 正整數
整數 零 正有理數 正分數
有理數 負整數 有理數 零
分數 正分數 負有理數 負整數
負分數 負分數
3、有關集合的簡單知識:
概括:把一些數放在一起,就組成一個數的集合,簡稱為數集;
所有的有理數組成的數集叫做有理數集;
所有的整數組成的數集叫做整數集;……
例:把下列各數填入表示它所在的數值的圈里:
-18,3.1416,0,2001,-0.142857,95%
正整數 負整數
整數集 有理數集
三、鞏固訓練: P20 ,練習:1,2,3
四、知識小結:
從有理數的分類入手,就著重于各類數的特點,特別是正,負及零的處理。
五、作業:
P20-21 習題2.1:2,3,4
初一上冊數學《有理數》教案精選范文四教學目標
1, 掌握有理數的概念,會對有理數按照一定的標準進行分類,培養分類能力;
2, 了解分類的標準與分類結果的相關性,初步了解“集合”的含義;
3, 體驗分類是數學上的常用處理問題的方法。
教學難點 正確理解分類的標準和按照一定的標準進行分類
知識重點 正確理解有理數的概念
教學過程(師生活動) 設計理念
探索新知在前兩個學段,我們已經學習了很多不同類型的數,通過上兩節課的學習,又知道了現在的數包括了負數,現在請同學們在草稿紙上任意寫出3個數(同時請3個同學在黑板上寫出).
問題1:觀察黑板上的9個數,并給它們進行分類.
學生思考討論和交流分類的情況.
學生可能只給出很粗略的分類,如只分為“正數”和“負數”或“零”三類,此時,教師應給予引導和鼓勵.
例如,
對于數5,可這樣問:5和5.1有相同的類型嗎?5可以表示5個人,而5.1可以表示人數嗎?(不可以)所以它們是不同類型的數,數5是正數中整個的數,我們就稱它為“正整數”,而5.1不是整個的數,稱為“正分數,,.??…(由于小數可化為分數,以后把小數和分數都稱為分數)
通過教師的引導、鼓勵和不斷完善,以及學生自己的概括,最后歸納出我們已經學過的5類不同的數,它們分別是“正整數,零,負整數,正分數,負分數,’.
按照書本的說法,得出“整數”“分數”和“有理數”的概念.
看書了解有理數名稱的由來.
“統稱”是指“合起來總的名稱”的意思.
試一試:按照以上的分類,你能作出一張有理數的分類表嗎?你能說出以上有理數的分類是以什么為標準的嗎?(是按照整數和分數來劃分的)分類是數學中解決問題的常用手段,這個引入具有開放的特點,學生樂于參與
學生自己嘗試分類時,可能會很粗略,教師給予引導和鼓勵,劃分數的類型要從文字所表示的意義上去引導,這樣學生易于理解。
有理數的分類表要在黑板或媒體上展示,分類的標準要引導學生去體會
練一練 1,任意寫出三個有理數,并說出是什么類型的數,與同伴進行交流.
2,教科書第10頁練習.
此練習中出現了集合的概念,可向學生作如下的說明.
把一些數放在一起,就組成了一個數的集合,簡稱“數集”,所有有理數組成的數集叫做有理數集.類似地,所有整數組成的數集叫做整數集,所有負數組成的數集叫做負數集……;
數集一般用圓圈或大括號表示,因為集合中的數是無限的,而本題中只填了所給的幾個數,所以應該加上省略號.
思考:上面練習中的四個集合合并在一起就是全體有理數的集合嗎?
也可以教師說出一些數,讓學生進行判斷。
集合的概念不必深入展開。
創新探究 問題2:有理數可分為正數和負數兩大類,對嗎?為什么?
教學時,要讓學生總結已經學過的數,鼓勵學生概括,通過交流和討論,教師作適當的指導,逐步得到如下的分類表。
有理數 這個分類可視學生的程度確定是否有必要教學。
應使學生了解分類的標準不一樣時,分類的結果也是不同的,所以分類的標準要明確,使分類后每一個參加分類的象屬于其中的某一類而只能屬于這一類,教學中教師可舉出通俗易懂的例子作些說明,可以按年齡,也可以按性別、地域來分等
小結與作業
課堂小結 到現在為止我們學過的數都是有理數(圓周率除外),有理數可以按不同的標準進行分類,標準不同,分類的結果也不同。
本課作業 1, 必做題:教科書第18頁習題1.2第1題
2, 教師自行準備
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1,本課在引人了負數后對所學過的數按照一定的標準進行分類,提出了有理數的概
念.分類是數學中解決問題的常用手段,通過本節課的學習使學生了解分類的思想并進
行簡單的分類是數學能力的體現,教師在教學中應引起足夠的重視.關于分類標準與分
類結果的關系,分類標準的確定可向學生作適當的滲透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不要過多展開。
2,本課具有開放性的特點,給學生提供了較大的思維空間,能促進學生積極主動地參加學習,親自體驗知識的形成過程,可避免直接進行分類所帶來的枯燥性;同時還體現合作學習、交流、探究提高的特點,對學生分類能力的養成有很好的作用。
3,兩種分類方法,應以第一種方法為主,第二種方法可視學生的情況進行。
初一上冊數學《有理數》教案精選范文五教學目的:
1.了解計算器的性能,并會操作和使用;
2.會用計算器求數的平方根;
重點:用計算器進行數的加、減、乘、除、乘方和開方的計算;
難點:乘方和開方運算;
教學過程:
1.計算器的使用介紹(科學計算器)
初一上冊數學一單元教案.png
2.用計算器進行加、減、乘、除、乘方、開方運算
例1用計算器求下列各式的值.
(1)(-3.75)+(-22.5) (2)51.7(-7.2)
解(1)
初一上冊數學一單元教案.png
(-3.75)+(-22.5)=-26.25
(2)
初一上冊數學一單元教案.png
51.7(-7.2)=-372.24
說明輸入數據時,按鍵順序與寫這個數據的順序完全相同,但輸入負數時,符號轉換鍵要放在數據之后鍵入.
隨堂練習
用計算器求值
1.9.23+10.2
2.(-2.35)×(-0.46)
雖然新教材使用已有兩年了,可今年我才第一次接觸到,兩年間別的同事對新教材的看法和見解我也頗有耳聞。當我拿著這本書時,覺得真是有種煥然一新的感覺,到處都是生動的圖畫和一些類似與漫畫書中的對話框,而且很多題目、事例都采用現實生活中的學生常見的事例,整本書把我的教學,學生的學習,日常的生活和數學緊密聯系到一起,用一句話形容:數學來自于生活!
我覺得新教材更能體會數學與實際生活的緊密聯系,并且能更好的體現大綱的要求。比如,讓學生通過數軸探求物體的兩次運動的結果,讓學生認識有理數的加減法運算法則,這個過程學生自己討論、發現問題,解決問題,從而獲得結論,體驗成功的喜悅。因此,他們體會了從特殊到一般,從具體到抽象的過程,使他們既能發現又能解決問題,大綱要求學生掌握的就是這種能力。
二教學前的思考
有理數這一章是學生從小學升入初中以來接觸到的第一章,對于所有的新生來說,這是他們的新起點,這一章學習效果的好壞直接關系到他們今后學習這門功課的信心和態度。所以,本章的教學我個人認為應該是“穩扎穩打,步步為營”,也就是說,每一節課必須讓絕大多數學生能輕松掌握,不能為了趕進度,一定要夯實基礎,為他們今后的學習奠定基礎,讓他們感覺到“數學并不是很難”。樹立他們學習數學的信心,激發他們數學的興趣。
三教材分析
1.地位:本章是數與代數這一部分的起始內容,是整個初中數學知識的奠基部分,這一部分的掌握情況直接關系到后面一元一次方程以及今后實數的學習!包括對平面直角坐標系的學習都有一定的幫助!
2.主要內容:書上是分為兩部分,一部分是有理數的概念,另一部分是有理數的運算我個人認為可分為三部分,有理數的意義(包括正負數的認識、數軸、相反數、絕對值和有理數比較大小),有理數的加、減、乘、除和四則混合運算,有理數的乘方及簡單的混合運算。
3.知識結構:
本章的知識結構圖:
正數
零
負數
數軸
有理數的運算
有理數比較大小
相反數
絕對值
有理數
4.課程學習的目標:
①理解有理數的意義,能用數軸上的點表示有理數,會比較有理數的大小。
②借助數軸理解相反數和絕對值的意義會求有理數的相反數與絕對值(絕對值符號內不含字母)。
③理解乘方的意義,掌握有理數的加、減、乘、除和乘方的運算法則,能進行有理數的簡單的混合運算(以三步為主)。
④理解有理數是運算律,并能運用運算律簡化運算。
⑤能運用有理數的運算解決簡單的問題。
⑥了解近似數和有效數字的有關概念,能對含有較大數字的信息作出合理的解釋和推斷。
5.本章的重點:有理數的運算,其中以有理數加法和乘法中符號法則尤為重要。在小學里,我們只有在運算是才會見到括號,而現在,我們學習負數時,很多時候用把負數括起來,比如:-(-5)、-|+3|、15+(-9)等,由于符號更加復雜了,學生在很多時候容易弄混淆,如:-|-5|=-5很多學生卻等于5。
本章的難點:有理數運算法則的理解,特別是有理數的乘法法則。
學習的關鍵:數軸的掌握,絕對值的理解和有理數的運算法則。
6.數學思想方法:
數學思想方法是數學知識的主要組成部分,也是數學的主要內容,通過分析,本章的數學方法主要有:
①數形結合思想。本章數與形的轉換提供了一個基本支撐點——數軸。有了數軸這個基礎,數與形就聯系起來了,就可以用數形結合思想解決問題了。利用數軸規定有理數的順序,既直觀又涵蓋了有理數比較大小的各種情況,書上16面有這樣的規定:在數軸上表示,它們從左到右的順序,就是從小到大的順序,即左邊的數小于右邊的數;利用數軸分析物體運動的實例,可以非常直觀地獲得物體兩次運動的結果,從而引出有理數加法的運算法則;利用數軸、通過蝸牛運動的例子引出有理數乘法法則。有了數軸,上述內容就能夠清楚地呈現。
比如教材上12面的第1、2題和17面的第2題:在數軸上表示下列各數:
15,-3/8,0,0.15,-30,-12.8,22/5,+20,-60
②分類討論的思想。本章中關于有理數的分類,就利用了這一思想。
如:正整數正整數
整數零正數
負整數負整數
有理數有理數零
正分數正分數
分數負數
負分數負分數
③對立統一的思想。由于本章引入了負數,相反數和倒數的概念,使加與減、乘與除統一起來,在小學數學中,加法與減法、乘法與除法都是對立的,現在則不同了,所以,在這章中,特別有利于對學生進行“對立統一”思想方法的教育。如:在進行有理數減法學習時讓學生觀察4-(-3)=7和4+(+3)=7由此可得4-(-3)=4+(+3),讓學生理解減法是可以化成加法的。最后讓學生總結減法法則。
④轉化的思想。本章中,通過“絕對值”的概念和符號法則,把有理數的運算轉化為非負有理數(即小學學過的算術)的運算來解決,這是非常重要的思想方法,它的引入不僅解決了有理數的運算問題,而且對進一步學習提供了一種重要的思想方法。
6.教學建議:
①讓學生體會數學與現實生活的緊密聯系,體現知識的應用,發展學生的數學應用意識,認識到數與符號是刻畫現實世界數量關系的重要語言。
②搞好與前兩個學段的銜接。整數、分數(包括小數)的知識,即正有理數及0的知識,還學過用字母表示數的知識,這些都是學習本章內容的基礎。
③教師的語言要生動形象能吸引學生的注意力,語速要稍慢。
④適當練習。
⑤給學生留有一定的學習空間,讓學生參與活動,培養學生的探究能力和創新精神。
⑤注重信息技術的應用。
7.幾點思考:
①對于負數、有理數的認識,強調讓學生經歷一個實際的情境,使學生在實際情境中體驗、感受、和理解有理數的意義。
②對于“有理數的運算”,降低了復雜性、技巧性和熟練程度的要求,有理數的加、減、乘、除、乘方的混合運算強調以三步為主,降低了要求,有利于學生學習。
③本章在有理數概念的教學中,有理數的運算中要有意識地設計具體目標,提供有助于培養學生數感的情境。如認識大數時,引導學生觀察、體會大數的情境,了解大數在現實生活中的應用,建立數感,光年和納米就是理解大數和小數的實際背景。
8.典型例題的處理:
教材第23面例4,圖文并茂,我采用多媒體展現題目,既省時間,學生又能清晰了解題意。書中第一種解法是教師和學生共同討論總結出來,第二種解法由學生分組討論,讓學生自己計算小結,讓他們能通過小組學習獲得成功的喜悅,促進學習的積極性。
四中考回顧
1.同位素的半衰期表示衰變一半樣品所需要的時間,鐳—226的半衰期約為1600年,1600用科學記數法表示為()
A:1.6×103B:0.16×104C:16×102D:160×10
1.使學生掌握有理數加法法則,并能運用法則進行計算;
2.在有理數加法法則的教學過程中,注意培養學生的觀察、比較、歸納及運算能力。
教學分析
重點:有理數加法法則。
難點:異號兩數相加的法則。
教學過程
一、復習
導課。
師生共同研究有理數加法法則
前面我們學習了有關有理數的一些基礎知識,從今天起開始學習有理數的運算.這節課我們來研究兩個有理數的加法。
兩個有理數相加,有多少種不同的情形?
為此,我們來看一個大家熟悉的實際問題:
足球比賽中贏球個數與輸球個數是相反意義的量.若我們規定贏球為“正”,輸球為“負”.比如,贏3球記為+3,輸2球記為-2.學校足球隊在一場比賽中的勝負可能有以下各種不同的情形:
(1)上半場贏了3球,下半場贏了2球,那么全場共贏了5球.也就是
(+3)+(+2)=+5.①
(2)上半場輸了2球,下半場輸了1球,那么全場共輸了3球.也就是
(-2)+(-1)=-3.②
現在,請同學們說出其他可能的情形.
答:上半場贏了3球,下半場輸了2球,全場贏了1球,也就是
(+3)+(-2)=+1;③
上半場輸了3球,下半場贏了2球,全場輸了1球,也就是
(-3)+(+2)=-1;④
上半場贏了3球下半場不輸不贏,全場仍贏3球,也就是
(+3)+0=+3;⑤
上半場輸了2球,下半場兩隊都沒有進球,全場仍輸2球,也就是
(-2)+0=-2;
上半場打平,下半場也打平,全場仍是平局,也就是
0+0=0.⑥
上面我們列出了兩個有理數相加的7種不同情形,并根據它們的具體意義得出了它們相加的和.但是,要計算兩個有理數相加所得的和,我們總不能一直用這種方法.現在我們大家仔細觀察比較這7個算式,看能不能從這些算式中得到啟發,想辦法歸納出進行有理數加法的法則?也就是結果的符號怎么定?絕對值怎么算?
這里,先讓學生思考2~3分鐘,再由學生自己歸納出有理數加法法則:
1.同號兩數相加,取相同的符號,并把絕對值相加;
2.絕對值不相等的異號兩數相加,取絕對值較大的加數符號,并用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0;
3.一個數同0相加,仍得這個數。
二、新授
應用舉例變式練習
例1計算下列算式的結果,并說明理由:
(1)(+4)+(+7);(2)(-4)+(-7);
(3)(+4)+(-7);(4)(+9)+(-4);
(5)(+4)+(-4);(6)(+9)+(-2);
(7)(-9)+(+2);(8)(-9)+0;
(9)0+(+2);(10)0+0.
學生逐題口答后,教師小結:
進行有理數加法,先要判斷兩個加數是同號還是異號,有一個加數是否為零;再根據兩個加數符號的具體情況,選用某一條加法法則.進行計算時,通常應該先確定“和”的符號,再計算“和”的絕對值.
解:(1)(-3)+(-9)(兩個加數同號,用加法法則的第2條計算)
=-(3+9)(和取負號,把絕對值相加)
=-12.
三、練習
下面請同學們計算下列各題:
(1)(-0.9)+(+1.5);(2)(+2.7)+(-3);(3)(-1.1)+(-2.9);
全班學生書面練習,四位學生板演,教師對學生板演進行講評.
P73練習:……
四、小結
1、這節課我們從實例出發,經過比較、歸納,得出了有理數加法的法則.今后我們經常要用類似的思想方法研究其他問題。
2、應用有理數加法法則進行計算時,要同時注意確定“和”的符號,計算“和”的絕對值兩件事。
五、作業
1.計算:
(1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);
(4)(+6)+(+9);(5)67+(-73);(6)(-84)+(-59);
(7)33+48;(8)(-56)+37.
2.計算:
(1)(-0.9)+(-2.7);(2)3.8+(-8.4);
(3)(-0.5)+3;(4)3.29+1.78;
(5)7+(-3.04);(6)(-2.9)+(-0.31);
(7)(-9.18)+6.18;(8)4.23+(-6.77);(9)(-0.78)+0.
3.計算:
4*.用“>”或“<”號填空:
(1)如果a>0,b>0,那么a+b______0;
(2)如果a<0,b<0,那么a+b______0;
(3)如果a>0,b<0,|a|>|b|,那么a+b______0;
(4)如果a<0,b>0,|a|>|b|,那么a+b______0.
5*.分別根據下列條件,利用|a|與|b|表示a與b的和:
(1)a>0,b>0;(2)a<0,b<0;
(3)a>0,b<0,|a|>|b|;(4)a>0,b<0,|a|<|b|.1、另:基礎訓練:同步練習。
課堂教學設計說明
“有理數加法法則”的教學,可以有多種不同的設計方案.大體上可以分為兩類:一類是較快地由教師給出法則,用較多的時間(30分鐘以上)組織學生練習,以求熟練地掌握法則;另一類是適當加強法則的形成過程,從而在此過程中著力培養學生的觀察、比較、歸納能力,相應地適當壓縮應用法則的練習,如本教學設計.
現在,試比較這兩類教學設計的得失利弊.
第一種方案,教學的重點偏重于讓學生通過練習,熟悉法則的應用,這種教法近期效果較好.
掌握有理數加法法則,并能準確地進行有理數加法運算。
教學重點:有理數的加法法則
教學難點:異號兩數相加的法則
教學教程:
一、復習提問:
1、如果向東走5米記作+5米,那么向
西走3米記作__.
2、已知a=-5,b=+3,
︱a︳+︱b︱=_
已知a=-5,b=+3,
︱a︱-︱b︱=__
-1012345678
二、授新課
小明在一條東西向的跑道上,先走了5米,又走了3米,能否確定他現在位于原來位置的哪個方向?與原來相距多少米?
規定向東的方向為正方向
提問:這題有幾種情況?
小結:有以下四種情況
(1)兩次都向東走,
(2)兩次都向西走
(3)先向東走,再向西走
(4)先向西走,再向東走
根據小結,我們再分析每一種情況:
(1)向東走5米,再向東走3米,一共向東走了多少米?
+5+3
(+5)+(+3)=+8
(2)向西走-5米,再向西走-3米,一共向東走了多少米?
-5
-3
(-3)+(-5)=-8
(3)先向東走5米,再向西走3米,兩次一共向東走了多少米?
+3
+5
(+5)+(-3)=2
(4)先向西走5米,再向東走3米,兩次一共向東走了多少米?
-5
+3(-5)+(+3)=-2
下面再看兩種特殊情況:
(5)向東走5米,再向西走5米,兩次一共向東走了多少米
-5
+5
(+5)+(-5)=0
(6)向西走5米,再向東走0米,兩次一共向東走了多少米?
-5
(-5)+0=-5
小結:總結前的六種情況:
同號兩數相加:(+5)+(+3)=+8
(-5)+(-3)=-8
異號兩數相加:(+5)+(-3)=2
(-5)+(+3)=-2
(+5)+(-5)=0
一數與零相加:(-5)+0=-5
得出結論:有理數加法法則
1、同號兩數相加,取相同的符號,并把絕對值相加
2、絕對值不等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得零
3、一個數與零相加,仍得這個數
例如:
(-4)+(-5)(同號兩數相加)
解:=-()(取相同的符號)
=-9(并把絕對值相加)
(-2)+(+6)(絕對值不等的異號兩數相加)
解:=+()(取絕對值較大的符號)
=+4(用較大的絕對值減去較小的絕對值)
練習:
口答:
1、(-15)+(-32)=
2、(+10)+(-4)=
3、7+(-4)=
4、4+(-4)=
5、9+(-2)=
6、(-0.5)+4.4=
7、(-9)+0=
8、0+(-3)=
計算:
(1)(-3)+(-9)(2)(-1/2)+(+1/3)
解略
練習:
(1)15+(-22)=
(2)(-13)+(-8)=
(3)(-0·9)+1·5=
(4)2·7+(-3·5)=
(5)1/2+(-2/3)=
(6)(-1/4)+(-1/3)=
練習三:
1、填空:
(1)+11=27(2)7+=4
(3)(-9)+=9(4)12+=0
(5)(-8)+=-15(6)+(-13)=-6
2、用“<”或“>”號填空:
(1)如果a>0,b>0,那么a+b0;
(2)如果a<0,b<0,那么a+b0;
(3)如果a>0,b<0,|a|>|b|,那么a+b0;
(4)如果a<0,b>0,|a|>|b|,那么a+b0
小結:
1、掌握有理數的加法法則,正確地進
行加法運算。
2、兩個有理數相加,首先判斷加法類
型,再確定和的符號,最后確定和的絕對值。
1.使學生了解有理數除法的意義,掌握有理數除法法則,會進行有理數的除法運算。
2.使學生理解有理數倒數的意義,能熟練地進行有理數乘除混合運算。
二、內容分析
有理數除法的學習是學生在小學已掌握了倒數的意義,除法的意義和運算法則,乘除的混合運算法則,知道0不能作除數的規定和在中學已學過有理數乘法的基礎上進行的。因而教材首先根據除法的意義計算一個具體的有理數除法的實例,得出有理數除法可以利用乘法來進行的結論,進而指出有理數范圍內倒數的定義不變,這樣,就得出了有理數除法法則。接下來,通過幾個實例說明有理數除法法則,并根據除法與乘法的關系,進一步得到了與乘法類似的法則。最后,通過幾個例題的教學,既說明了有理數除法的另一種形式,也指出了除法與分數互化的關系,同時,還指出有理數的除法化成有理數的乘法以后,可以利用有理數乘法的運算性質簡化運算,這樣,就說明了有理數乘除的混合運算法則。
本節課的重點是除法法則和倒數概念;難點是對零不能作除數與零沒有倒數的理解以及乘法與除法的互化,關鍵是,實際運算時,先確定商的符號,然后再根據不同情況采取適當的方法求商的絕對值,因而教學時,要讓學生通過實例理解有理數除法與小學除法法則基本相同,只是增加了符號的變化。
三、教學過程
復習提問:
1.小學學過的倒數意義是什么?4和的倒數分別是什么?0為什么沒有倒數。
答:乘積是1的兩個數互為倒數,4的倒數是,的倒數是,0沒有倒數是因為沒有一個數與0相乘等于1等于。
2.小學學過的除法的意義是什么?10÷5是什么意思?商是幾?0÷5呢?
答:除法是已知兩個因數的積與其中一個因數,求另一個因數的運算,15÷5表示一個數與5的積是15,商是3,0÷5表示一個數與5的積是0,商是0。
3.小學學過的除法和乘法的關系是什么?
答:除以一個數等于乘上這個數的倒數。
4.5÷0=?0÷0=?
答:0不能作除數,這兩個除式沒有意義。
新課講解:
與小學學過的一樣,除法是乘法的逆運算,這里與小學不同的是,被除數和除數可以是任意有理數(零作除數除外)。
引例:計算:8×(-)和8÷(-4)
8×(-)=-2,
8÷(-4),由除法的意義,就是要求一個數,使它與-4相乘,積為8,
(-4)×(-2)=8,
8÷(-4)=-2。
從而,8÷(-4)=8×(-),
同樣,有(-8)÷4=(-8)×,
(-8)÷(-4)=(-8)×(-),
這說明,有理數除法可以利用乘法來進行。
又(-4)×=-1,4×=1,
由4和互為倒數,說明(-4)和(-)也互為倒數。
從而對于有理數仍然有:乘積為1的兩個數互為倒數。
提問:-2,-,-1的倒數各是什么?為什么?
注意:求一個整數的倒數,直接寫成這個數的數分之一即可,求一個分數的倒數,只要把分子分母顛倒一下即可,一般地,a(a≠0)的倒數是,0沒有倒數。
由上面的引例和倒數的意義,可得到與小學一樣的有理數除法法則,則教科書第101頁方框里的黑體字,用式子表示,就是a÷b=a·(b≠0)。
注意:有理數除法法則也表示了有理數除法和有理數乘法可以互相轉化的關系,與小學一樣,也規定:0不能作除數。
例1計算。(見教科書第103頁例1)
解答過程見教科書第103頁例1。
閱讀教科書第102頁至第103頁。
課堂練習:教科書第104頁練習第l,2,3題。
提問:l.正數的倒數是正數,負數的倒數是負數,零的倒數是零,這句話正確嗎?
(答:略)
2.兩數相除,商的符號如何確定?為什么?商的絕對值呢?
答:商的符號由兩個數的符號確定,因為除以一個數等于乘以這個數的倒數,當兩個不等于零的數互為倒數時,它們的符號相同。故兩數相除,仍是同號得正,異號得負,商的絕對值則可由兩數的絕對值相除而得到。
從上所述,可得到有理數除法與乘法類似的法則,見教科書第102頁上的黑體字。
在進行有理數除法運算時,既可以利用乘法(把除數化為它的倒數),也可以直接(特別是在能整除時)進行,具體利用哪種方式,根據情況靈活選用。
例2見教科書第104頁例2。
解答過程見教科書第104頁例2。
注意:除法可以表示成分數和比的形式。如84÷(-7)可以寫成或84:(-7);反過來,分數和比也可以化為除法,如可以寫成(-12)÷3,15:6可以寫成15÷6。這說明,除法、分數和比相互可以互相轉化,并且通過這種轉化,常??梢院喕嬎恪?/p>
例3見教科書第105頁例3。
分析:(l)有兩種算法,一是將寫成,然后用除法法則或利用乘法進行計算;二是將寫成24+,然后利用分配律進行計算。
對于(2),是乘除混合運算,可以接從左到右的順序依次計算,也可以把除法化為乘法,按乘法法則運算。
解答過程見教科書第105頁例3。
講解教科書例3后的兩個注意點。
課堂練習:見教科書第105頁練習。
第1題可直接約分,也可化為除法。
第2題可先化成乘法,并利用乘法的運算律簡化運算。
課堂小結:
閱讀教科書第102頁至第105頁上的內容,理解倒數的意義,除法法則的兩種形式及教材上的注意點。
提問:(l)倒數的意義是什么?有理數除法法則是什么?如何進行有理數的除法運算?(兩種形式)如何進行有理數乘除混合運算?
(2)0能作除數嗎?什么數的倒數是它本身?的倒數是什么?(a≠0)
四、課外作業
1.理解有理數乘法的意義,掌握有理數乘法法則中的符號法則和絕對值運算法則,并初步理解有理數乘法法則的合理性;
2.能根據有理數乘法法則熟練地進行有理數乘法運算,使學生掌握多個有理數相乘的積的符號法則;
3.三個或三個以上不等于0的有理數相乘時,能正確應用乘法交換律、結合律、分配律簡化運算過程;
4.通過有理數乘法法則及運算律在乘法運算中的運用,培養學生的運算能力;
5.本節課通過行程問題說明有理數的乘法法則的合理性,讓學生感知到數學知識來源于生活,并應用于生活。
教學建議
(一)重點、難點分析
本節的教學重點是能夠熟練進行有理數的乘法運算。依據有理數的乘法法則和運算律靈活進行有理數乘法運算是進一步學法運算和乘方運算的基礎。有理數的乘法運算和加法運算一樣,都包括符號判定與絕對值運算兩個步驟。因數不包含0的乘法運算中積的符號取決于因數中所含負號的個數。當負號的個數為奇數時,積的符號為負號;當負號的個數為偶數時,積的符號為正數。積的絕對值是各個因數的絕對值的積。運用乘法交換律恰當的結合因數可以簡化運算過程。
本節的難點是對有理數的乘法法則的理解。有理數的乘法法則中的“同號得正,異號得負”只是針對兩個因數相乘的情況而言的。乘法法則給出了判定積的符號和積的絕對值的方法。即兩個因數符號相同,積的符號是正號;兩個因數符號不同,積的符號是負號。積的絕對值是這兩個因數的絕對值的積。
(二)知識結構
(三)教法建議
1.有理數乘法法則,實際上是一種規定。行程問題是為了了解這種規定的合理性。
2.兩數相乘時,確定符號的依據是“同號得正,異號得負”.絕對值相乘也就是小學學過的算術乘法.
3.基礎較差的同學,要注意乘法求積的符號法則與加法求和的符號法則的區別。
4.幾個數相乘,如果有一個因數為0,那么積就等于0.反之,如果積為0,那么,至少有一個因數為0.
我們已得出了每個小組的最后分數,那么哪個小組是優勝小組?(第一小組),回去以后,老師就把小獎品發給他們,相信他們一定會很高興。
同學們,這節課你們愿不愿意也分成幾個小組,看一看那個小組的同學表現得最出色?(原意)那么老師就按座次給同學們分組,每一豎排為一組。老師把組號寫在黑板上,以便記分。
希望各組同學積極思考、踴躍發言。同學們有沒有信心得到老師的小獎品?(有)同學們加油!
我們已得到了這7個小組的最后得分,那位同學能試著用算式表示?(學生在教師指導下列算式)
以上這些算是都是什么運算?(加法),兩個加數都是什么數?(有理數),這就是我們這節課要學習的——有理數的加法(板書課題)。
剛才老師說要給七年級三班的優勝組發獎品,老師手里有12本作業本,優勝組共6人,老師將送出的作業本數占總數的幾分之幾?(二分之一)分數最低的一組共7人,他們每人交給老師一個作業本,占總數的幾分之幾?(十二分之七)如果,老師得到的作業本記為正數,送出的作業本記為負數,則老師手里的作業本增加或減少幾分之幾?同學們能列出算式嗎?(學生列式)對于這個算式,同學們還能輕易的感知出結果嗎?(不能)
對于有理數的加法,有的同學們能直接感知得到結果,有的靠感知是不夠的,這就需要我們共同探索規律?。ǔ鍪就队埃^察這7個算式,每一個算式都是怎樣的兩個有理數相加?(引導學生回答)你們還能舉出不同以上情況的算式嗎?(不能),這說明這幾個算式概括了有理數加法的不同情況。
前兩個算式的加數在符號上有什么共同點?(相同),那么我們就可以說這是什么樣的兩數相加?(同號兩數相加)同學們還能觀察出那幾個算式可歸為一類嗎?(3、4、5、異號兩數相加,6、7一個數同0相加)
同學們已把這7個算式分成了三種情況,下面我們分別探討規律。
(1)同號兩數相加,其和有何規律可循呢?大家觀察這兩個式子,回答兩個問題。(師引導觀察,得出答案),那位同學能填好這個空?
(2)異號兩數相加,其和有何規律呢?大家觀察這三個式子回答問題。(引導學生分成兩類,容易得到絕對值相同情況的結論。再引導學生觀察絕對值不相同的情況,回答問題)哪位同學能概括一下這個規律?(引導學生得出)
(3)一個數同0相加,其和有什么規律呢?(易得出結論)
同學們經過積極思考,探索出了解決有理數加法的規律,顧一下(出哪位同學能帶領大家共同回顧一下?(出示投影,學生大聲朗讀)我們把這個規律稱為有理數的加法法則。
同學們都很聰明,積極參與探索規律,每個組都有不錯的成績。個別落后的組不要氣餒,繼續努力,下面老師就給大家一個得分的機會,看哪一組能[出題制勝]?。ǔ鍪荆?/p>
(活動過程1后評價、加分;教師以其中一題為例,講解題格式及過程;活動過程2后:讓每組第三排同學評價加分)
同學們已經基本掌握了有理數的加法法則,并會運用它,但七年級三班有幾位同學對這一內容掌握的不是太好,以致在作業中出了毛病,他們為此很苦惱。希望咱們同學能幫幫他們,看哪位同學能像妙手回春的神醫華佗一樣“藥”到“病”除?。◣熒餐巍安 保?/p>
看來同學們對有理數的加法已經掌握得很好了,大家還記得前面那個難倒我們的有理數的加法題呢?那位同學能解決這個問題呢?(學生口述師板書)。在大家的努力下,我們終于攻破了這個難關。